
Pro-Flex,LLC

Flexible Gas Piping Systems

Pro-Flex[®] & Flak Jacket[™] CSST

Installation/Training Guide

Pro-Flex, LLC 501 South State Road 341 Hillsboro, IN 47949

Patented System: #5,845,946, #5,857,716, & 6,102,445 other patents pending

www. ProFlexCSST.com Phone: 877-798-6291 Fax: 765-6139

Version 17.1 5/2017

PRO-FLEX[®] CSST Training Guide and Installation Manual

TABLE OF CONTENTS

1.0	INTRODUCTION	
	User Warnings, Limitations of Manual	1-3
	Applicable Codes & Standards	3
2.0	DESCRIPTION OF SYSTEM AND COMPONENTS	
	System Components	4-7
	(Tubing, Fittings, Striker Plates, Pressure Regulators, Manifolds, Shut-off Valves, Other Components)	
3.0	SYSTEM CONFIGURATIONS	
	System Configurations	8
	Series Layout & Parallel Layout (low pressure)	9
	Dual Pressure Layout	9
	Multiple Manifold Systems & Combination Steel/CSST System, Elevated Pressure System .	9-10
	Determine Pressure System	11
3.2	SIZING METHODS & EXAMPLES	
	Low Pressure System (longest length method) (example #1)	12
	Medium Pressure System (example #2)	12
	Elevated Dual Pressure System (example #3)	13
	Combination Steel / CSST System	14
4.0	INSTALLATION PRACTICES / GUIDELINES	
	General Installation Guidelines	16-17
	Minimum Bend Radius	17
	Support	17
4.2	FITTING ASSEMBLY	
	Assembly and Re-assembly Procedures	18
	Tubing Cutting / End Preparation	18
	Minimum Tightening Torque	19
4.3	ROUTING	
	Vertical Runs	20
	Horizontal Runs	20
	Indoor / Outdoor Issues	20-21
	Clearance Holes & Notching	22
	Concealed Locations for Fittings	23
4.4	PROTECTION	
	Striker Plate Requirements	24-25
	Spiral Metal Hose Requirements	24-25
	Outdoor Installations	21, 26
	Metal Wall Studs Installation	22

	Meter Hook-ups	
	Fixed Appliance	
	Moveable Appliance /Termination Outlets	26
	Pad Mounted Appliance	31
	Gas Fireplace Installations	
	Fire Rated Construction through Plenums and Installations within a chase	
	BBQ Gas Grill – Stationary	
	BBQ Gas Grill – Moveable	31
	Gas Lamps	31
	CSST Buried Under Concrete Slab	21
	CSST Embedded in Concrete Slab	21
	Supporting of Conduit Embedded in Reinforced Slab	21
	Short (2 to 6 ft) Outdoor Roof Mounted Installations	
	Long Length Outdoor Roof Mounted Installations	
	Two Examples of Appliance Termination / Stub-out	
	Extending Existing CSST Tubing Run	
4.7	MANIFOLD STATIONS	
	Allowable Locations / Configurations	
4.8	PRESSURE REGULATORS	
	Installation / Sizing Requirements	
	Vent Limiter Option	
	Vent Line and Sizing Requirements	
	Adjustments	
4.9	UNDERGROUND USAGE	20, 21, 26
4.10	ELECTRICAL BONDING	
5.0	INSPECTION / REPAIR / REPLACEMENT	
	Inspection and Testing of Installed CSST	
	Pressure Testing and Inspection Procedures	37
	Appliance Connection Leakage Check Procedure	
	Repair / Replacement of Damaged CSST Tubing	
6.0	SIZING TABLES (Natural Gas and LP Gas)	
	Natural Gas – Low Pressure to Medium Pressure	
	Natural Gas – Elevated Pressure	,
	Natural Gas – 5 psig	
	Propane Gas	
	Iron Pipe Capacity Table	-
	Referenced Data	
7.0	TECHNICAL DATA SPECIFICATION SHEET	
8.0	CSST INSTALLATION CHECK LIST	
9.0		
9.2	QUALIFIED INSTALLER CARD	-

1.0 Introduction

Pro-Flex[®] CSST and Flak Jacket[™] Arc-Resistant CSST must be installed by a qualified installer who meets the following criteria:

- 1. Installer must meet all qualifications required by the state and/or local administrative authority [AHJ] administering the provisions of the code where the gas piping is installed.
- 2. An installer must also be gualified in the use of Pro-Flex[®] and Flak Jacket[™] CSST. Qualification for Pro-Flex, LLC's CSST systems can be completed by reading the Pro-Flex®, LLC's Flexible Gas Piping System Installation/Training Guide and registering with Pro-Flex, LLC to obtain a Qualified Installer Card by either mailing in the registration card from the back of the guide or registering online at www.proflexcsst.com. In submitting either the printed or online registration, you are affirming that you understand all aspects of the installation requirements and local plumbing, mechanical, electrical, and/ or building codes applicable. If you do not understand all requirements and local codes, contact a Qualified Installer. You must presently possess or obtain prior to installation, a Pro-Flex® Qualified Installer Card.

The installation shall be made in accordance with local codes, or, in the absence of local codes, in accordance with the National Fuel Gas Code [ANSI Z223.1 / NFPA 54]; Natural Gas and Propane Installation Code [CSA B149.1]; the International Fuel Gas Code [IFGC]; the Unified Plumbing Code [UPC]; the Federal Manufactured Home Construction and Safety Standards [24 CFR Part 3280]; or the Standard on Manufactured Housing [NFPA 501] as applicable. In addition, the installation instructions as precribed by Pro-Flex, LLC must be followed.

Special attention must be given to the proper design, installation, testing and use of the gas piping. Sound engineering principles and practices must be exercised as well as diligent adherence to the proper installation procedures. All installed systems must pass customary installation inspections by the administrative authority prior to being placed in service.

f A When a conflict exists between this guide and local code requirements; the local codes shall take precedence.

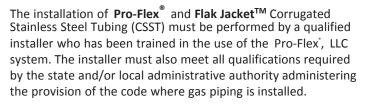
Improper installation or operation of the gas piping system may result in fire, explosion, or asphyxiation. Only components provided or specified by Pro-Flex[®], LLC as part of the fuel gas system are to be used in the installation. Use of components from other flexible gas piping systems other than those specified as part of the Pro-Flex[®] piping system is prohibited and may result in poor system performance and serious bodily injury or property damage.

The installation instructions and practices outlined in this training guide only apply to the use of Pro-Flex® CSST flexible gas piping systems. Pro-Flex, LLC, assumes no responsibility for installations made with other manufacturers' flexible gas piping systems

ANSI I C 1 • CSA 6.26

"Fuel Gas Piping Systems Using Corrugated Stainless Steel Tubing (CSST)"

This standard applies to natural and propane gas piping systems using corrugated stainless steel tubing (CSST), intended for installation in residential, commercial or industrial building including the following components as a minimum:


- a) Corrugated stainless steel tubing (CSST) [Pro-Flex[®] and Flak Jacket[™] CSST]
- b) Fittings for connection to the CSST
- c) Striker plates and/or protective conduit to protect the installed CSST from puncture threats. Other components of piping systems covered in this standard include gas manifolds, gas pressure regulators. If such additional components are required to complete the gas piping installation, they shall be either be provided as part of the piping system or specified in this Pro-Flex[®], LLC Flexible Gas Piping Systems CSST Installation/Training Guide.
 - **Pro-Flex**[®] Fittings are tested for concealment (subject to local code approval)
 - **Pro-Flex**[®] and **Flak Jacket[™] CSST** can be routed in most locations where traditional rigid gas piping materials are installed:
 - * Inside hollow wall cavities and through walls
 - * Beneath or through floor and ceiling joists
 - * On top of ceiling joists in an attic space
 - * Outside of a building to gas meters and propane second stage regulators and nearby appliances.
 - **Pro-Flex**[®] and **Flak Jacket**[™] CSST have been tested and listed by CSA Group for outdoor use.
 - **Pro-Flex**[®] and **Flak Jacket**[™] can be used with all fuel gases recognized in the NFPA 54 National Fuel Gas Code up to a <u>maximum operating pressure of 5 psi (34.5 kPa)</u>. The maximum actual operating pressure, including transients, shall not in any case exceed 6.5 psi (44.8 kPa).
 - **Pro-Flex®** and **Flak Jacket[™]** can be used in combination with all approved fuel piping materials for new construction and for replacing and retrofitting existing piping installations. All **Pro-Flex®** mechanical joint fittings terminate in a standard NPT male or female pipe thread which allows for attachment to valves, unions and couplings. However, Pro-Flex Fittings are only to be used with **Pro-Flex®** and **Flak Jacket[™]** CSST tubing. *Inter-connection of tubing and fittings with other CSST brands is prohibited!*
 - For underground burial and embedded in concrete, (CSST) flexible gas piping must be routed within a non-metallic, water tight conduit. No mechanical joint fittings are permitted within the conduit.
 - **Pro-Flex**[®] and **Flak Jacket**[™] may be connected directly to <u>*FIXED*</u> appliances (subject to local code approval). Approved flexible appliance connectors must be used to connect to a moveable gas appliance.
 - When using **Pro-Flex** flexible gas piping systems, precautions should be taken to ensure any exposed tubing is not damaged or abused during building construction or reconstruction.
 - **Pro-Flex® and Flak Jacket™** <u>shall not be</u> routed into any firebox that is vented through the roof of the structure.

Pro-Flex, LLC 877-798-6291

Hillsboro, IN 47949 ProFlexTech@ProFlexCSST.com

User Warnings

This Installation/Training Guide provides the user with a general guidance when designing and installing fuel gas piping systems using **Pro-Flex**[®] and **Flak Jacket[™]** CSST gas piping. This guideline must be used in conjunction with all local building codes. Local requirements will take precedence in the event there is a conflict between the guideline and the local codes. The installation shall be made in accordance with local codes, or, in the absence of local codes, in accordance with National Fuel Gas Code, ANSI Z223.1/NFPA 54, Natural Gas and Propane Installation Code, CSA B149.1 & B149.2 in Canada, the International Fuel Gas Code, the Federal Manufactured Home Construction and Safety Standard, 24 CFR Part 3280, the Manufactured Housing Construction and Safety Standard, NFPA 501, as applicable.

Special attention must be given to the proper design, installation, testing and use of the gas piping system. Sound engineering principles and practices must be exercised, as well as diligent adherence to the proper installation procedures. All installed systems must pass customary installation inspections by the administrative authority prior to being placed in service.

WARNING!

Improper installation or operation of the system may result in fire, explosion or asphyxiation. Only the components provided or specified by Pro-Flex, LLC, for use as part of the fuel gas system are to be used in the installation. Use of components from other flexible gas piping systems other than those specified as part of the Pro-Flex system is prohibited and may result in poor performance and serious bodily injury or property damage.

Applicable Codes & Standards

Standards:

 ANSI LC1 / CSA 6.26 Standard for "Fuel Gas Piping Systems Using Corrugated Stainless Steel Tubing (CSST)."

Listings:

- CSA CSA Group Certificate of Compliance #1174673
- IAPMO International Association of Plumbing & Mechanical Officials - File #3669

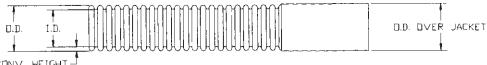
Code Compliances:

- NFPA 54 /ANSI Z223.1 National Fuel Gas Code
- ICC International Fuel Gas Code
- ICC International Mechanical Code
- ICC International Building Code
- IAPMO Uniform Plumbing Code
- IAPMO Uniform Mechanical code
- National Standard of Canada Natural Gas & Propane Installation Codes, CAN/CGA-B149.1

Limitations of this Guide

While every effort has been made to prepare this document in accordance with all regional model codes in effect at its printing, Pro-Flex, LLC, cannot guarantee that the local administrative authority will accept the most recent version of these codes. It is the ultimate responsibility of the qualified installer to determine suitability and acceptance of any building components including gas piping. Pro-Flex, LLC, manufacturer of Pro-Flex[®] and Flak Jacket[™] flexible gas piping systems assumes no responsibility for labor or material for installations made without prior determination of local code authority acceptance.

copyright 1996, 1998, 1999, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2017 by Pro-Flex, LLC all rights reserved


2.0 Description of System and Components

Pro-Flex Gas Piping Systems bear the following Patents:

#5,845,946; # 5,857,716; and 6,102,445 - other patents pending.

Yellow JacketTM

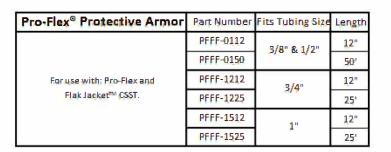
CONV. HEIGHT

Brand Name	Part Number [As printed on tube]	Nominal Size	Metric Equivalent	EHD	Jacket Color/ Type	Tube Outside Diameter	Tube Inside Diameter	Tube Outside Diameter over Jacket	Available Lengths
	PFCT-3875	3/8"	10mm	15	Yellow Insulative	0.600"	0.450"	0.635"	25', 50', 7
	PFCT-1275	1/2"	15mm	18	Yellow Insulative	0.700"	0.510"	0.745"	25', 50', 7 150', 225
Pro-Flex® CSST	PFCT-3475	3/4"	20mm	25	Yellow Insulative	1.001"	0.780"	1.046"	25', 50', 7 150'*, 225
	PFCT-0175	1"	25mm	31	Yellow Insulative	1.240"	1.070"	1.302"	25', 50', 7 150'*
	PFCT-0114	1 1/4"	31mm	37	Yellow Insulative	1.600"	1.290"	1.650"	25', 50', 7 150'*
	PFARCT-12	1/2"	15mm	18	Black Arc- Resistant	0.700"	0.510"	0.810"	25', 50', 7 150', 225
Flak Jacket [™]	PFARCT-34	3/4"	20mm	25	Black Arc- Resistant	1.001"	0.780"	1.090"	25', 50', 7 150'*, 225
Arc-Resistant CSST	PFARCT-01	1"	25mm	31	Black Arc- Resistant	1.240"	1.070"	1.355"	25', 50', 7 150'*
	PFARCT-0114	1 1/4"	31mm	37	Black Arc- Resistant	1.600"	1.290"	1.70"	25', 50', 7 150'*

All lengths are shipped as a coil unless followed with an *. Lengths denoted with an * are shipped on non-returnable spools.

CSST, is designed to convey all Natural and LP Gases throughout the structure and nearby outdoor appliances. All tubing is clearly marked with the following: Brand Name, Part Number, Maximum Gas Pressure Rating [5 psi], EHD, the Standard listed to, Listing Marks, the words Fuel Gas, and "foot marks".

		Fits Tubing	NPT Male	NPT Female
Pro-Flex [®] Male Fitting	Part Number	Size	Thread	Thread
For use with: Pro-Flex® and	PFMF-3805	3/8" [10mm]	1/2"	3/8"
	PFMF-1212	1/2" [15mm]	1/2"	3/8"
Flak Jacket [™] CSST.	PFMF-3406	3/4" [20mm]	3/4"	1/2"
Includes : Retainer Ring, Slide	PFMF-0106	1" [25mm]	1"	3/4"
Ring, O-ring, and High Temperature Gasket.	PFMF-0114	1 1/4" [31mm]	1 1/4"	1"


Pro-Flex [®] Female Fitting	Part Number	Fits Tubing Size	NPT Female Thread
For use with: Pro-Flex and	PFFN-3812	3/8" [10mm]	3/8"
Flak Jacket [™] CSST.	PFFN-1212	1/2" [15mm]	3/8"
Includes : Retainer Ring, Slide Ring, O-ring, and High Temperature	PFFN-3406	3/4" [20mm]	1/2"
Gasket.	PFFN-0106	1" [25mm]	3/4"

Pro-Flex [®] Union	Part Number	Fits Tubing Size
For use with: Pro-Flex and	PFFN-3812	3/8" [10mm]
Flak Jacket TM CSST. Includes : 2 each Retainer Ring, Slide Ring, Q-ring, and High	PFFN-1212	1/2" [15mm]
	PFFN-3406	<mark>3/4" [20mm]</mark>
Temperature Gasket.		

Pro-Flex [®] Striker Plates	Part Number	Dimensions
	PFSP-0302	<mark>3"</mark> x 2"
For use with: Pro-Flex and Flak Jacket ^{the} CSST.	PFSP-0307	<mark>3" x</mark> 7"
	PFSP-0312	3" x 12"
	PFSP-0617	6" x 17"

Pro-Flex [®] Tees	ro-Flex [®] Tees Part Number	
	PFTE-BBB6	1/2" x 1/2" x1/2"
For use with: Pro-Flex and Flak Jacket [™] CSST. Used to connect 3 segments of CSST. [Run x Run x Branch]	PFTE-CBB6	3/4" x 1/2" x1/2"
	PFTE-CCB6	3/4" x 3/4" x 1/2"
	PFTE-CCC6	3/4" x 3/4" x 3/4"
	PFTE-DDB6	1" x 1" x 1/2"

Pro-Flex [®] Female Branch Tees	Part Number	Run x Run	Branch
For use with: Pro-Flex and	PFTF-BBB6	1/2" x 1/2"	1/2" FIP
Flak Jacket [™] CSST.	PFTF-CBB6	3/4" x 1/2"	1/2" FIP
Used to connect 2 segments of CSST and 1 rigid	PFTF-CCB6	3/4" x 3/4"	1/2" FIP
pipe segment. [Run x Run x Branch]	PFTF-CCC6	3/4" x 3/4"	3/4" FIP
[Kun x Kun x Branch]	PFTF-DDB6	1" x 1"	1/2" FIP

Pro-Flex [®] Accessory Packs	Part Number	Size
For use with: Pro-Flex® and	PFAP-3810	3/8" [10mm]
Flak Jacket [™] CSST.	PFAP-1210	1/2" [15mm]
Replacement components for lost or broken	PFAP-3410	3/4" [20mm]
components. Each pack contains: 4 Retainer Rings, 2 Slide Rings, 2 O-Rings, & 2 High	PFAP-0110	1" [25mm]
Temperature Gaskets.	PFAP-0114	1 1/4" [31mm]

Pro-Flex® Termination Plate w/ Fitting or Valve	Part Number	Size	Outlet
	PFST-12	1/2" [15mm]	1/2" MIP / 3/8" FIP Fitting
For use with: Pro-Flex® and	PFST-34	3/4" [20mm]	3/4" MIP / 1/2" FIP Fitting
Flak Jacket [™] CSST.	PFST-01	1" [25mm]	1" MIP / 1/2" FIP Fitting
Choice of fitting or valve configuration.	PFVT-1206	1/2" [15mm]	1/2" MIP Direct Connect Valve
	PFVT-3406	3/4" [20mm]	3/4" MIP Direct Connect Valve

Pro-Flex [®] Threaded Termination Plate	Part Number	Size
	PFTP-1212	3/8" [10mm] & 1/2" [15mm]
For use with: Pro-Flex [®] and Flak Jacket [™] CSST.	PFTP-3412	3/4" [20mm]
	PFTP-0112	1" [25mm]
	PFTP-0114	1 1/4" [31MM]

Pro-Flex [®] Cast Epoxy Coated Manifolds	Part Number	Run x Run	Branch Size/Numbe r
For use with: Pro-Flex [®] and Flak Jacket [™] CSST. Manifolds may be joined or fabricated using using approved rigid pipe components.	PFMN-BBB6	1/2" FIP x 1/2" FIP	1/2" FIP / 4
	PFMN-CCB6	3/4" FIP x 3/4" FIP	1/2" FIP / 4
	PFMN-DDBB	1" FIP x 1" FIP	1/2" FIP / 2
	PFMF-DDCC	1" FIP x 1" FIP	3/4" FIP / 2

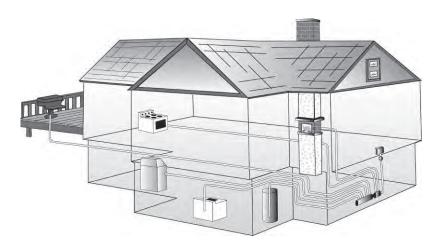
Additional Items approved as Part of the Pro-Flex[®] Flexible Piping System

Line Pressure Regulators with Vent Limiter	Part Number	Port Size / Gas
For use with: Pro-Flex [®] and Flak Jacket [™] CSST.	PFMR-3253N	1/2" / Natural Gas
Maxitrol 325L series for use with 2psi gas systems.	PFMR-3253L	1/2 " / Propane
Contact Pro-Flex, LLC for additional regulators.	PFMR-3255N	3/4" / Natural Gas
	PFMR-3255L	3/4" / Propane

Bonding Clamp	Part Number	Use With:
For use with: Pro-Flex® and Flak Jacket [™] CSST. Listed to UL 467	PFBC-AB	3/8" & 1/2", Pro-Flex Fittings or 1/2" - 1" Rigid Pipe
	PFBC-CDE	3/4", 1", & 1 1/4" Pro-Flex Fittings or 1 1/4" - 2" Rigid Pipe

Shut- Off Valves	Part Number	Inlet/Outlet
For use with: Pro-Flex [®] and Flak Jacket [™] CSST.	PFGVV-38	3/8" FIP
Manually operated gas shut-off valves for use indoor/outdoor	PFGVO-F12	1/2" FIP
installations and are for use in gas piping systems between	PFGVO-F34	3/4" FIP
the meter and the connection to the valve of a gas appliance at pressures up to 5 psi.	PFGV-F01	1" FIP

Ox Box Gas Outlet Box	Part Number	Description
For use with: Pro-Flex [®] and Flak Jacket [™] CSST.	PFOX-1206	1/2"
	PFOX-1206FR	1/2" Fire Rated
Gas Outlet Box - provides a recessed gas valve.	PFOX-3406	3/4"
	PFOX-3406FR	3/4" Fire Rated



3.0 System Configuration & Sizing

Configuration & Sizing

Prior to piping installation, refer to building plans or prepare a sketch showing the location of the appliances, the various appliance load demands, point of delivery (location of gas meter or second stage LP regulator), and possible piping routes. Appliance load demand data can be obtained from the manufacturers name-plate located on each appliance, or provided to the system designer by the builder/contractor.

 a) Determine the local piping restrictions prior to installing the flexible gas piping. Confirm that the local administrative authority has accepted the use of flexible gas piping. Corrugated Stainless Steel Tubing has been accepted by most major code bodies, but local or state adoption of these codes often lags behind. Check with the local administrative authority.

b) Determine metered (supply) pressure.

Natural Gas: [Check with the local gas utility to determine the pressure supplied by the meter.]

- Standard low-pressure supply throughout the USA and Canada is typically 6-7 inches water column (also designated as 1/4 PSI or 4 ounces).
- Higher pressure supply such as 14 inches w.c. (1/2 PSI) and 2 PSI provide significant CSST size reduction. Check with the local gas utility for the availability of elevated pressure.

Propane (Liquefied Petroleum Gas): [Check with the propane supplier to determine the pressure supplied]

- LP is typically supplied within residential buildings at 11 inches w.c. This pressure is set at the second stage regulator.
- Elevated pressure settings from 14 inches w.c. to 2 PSI and 5 PSI also provide CSST size reductions. Check with the propane gas supplier for available pressure.
- c) Determine the total capacity needed for all appliances. CFH/BTUH equivalents for natural gas or propane flow can be obtained from the local gas utility or propane supplier. The capacity tables within this guide or any approved CSST tables should be used to determine pipe sizing needed to meet BTUH input load requirements.
 - For natural gas with a specific gravity of 0.60, one cubic foot per hour (1 CFH) is approximately 1,000 BTUH.
 - For propane gas with a specific gravity 1.52, one cubic foot per hour (1 CFH) is approximately 2,500 BTUH.

3.1.a Series and Parallel (Low Pressure) Systems

DETERMINE TOTAL CAPACITY NEEDED FOR APPLIANCES.

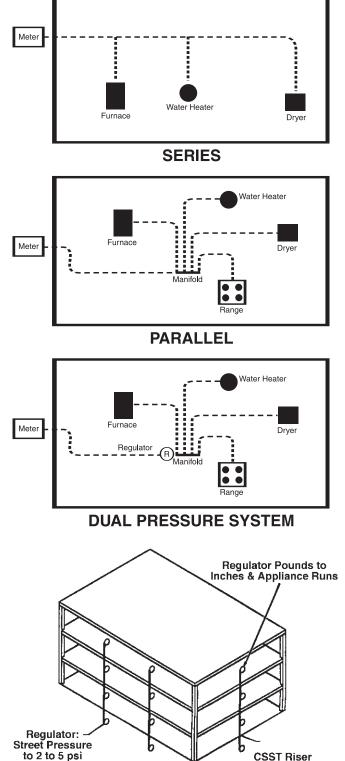
Data can be obtained from the manufacturers nameplate located on the gas appliance. BTU equivalents for CFH can be obtained from the local utility. In most cases, one Cubic Foot per Hour (1 CFH) is estimated to be 1,000 BTUH heating value (natural gas) and Propane has a heating value around 2,500 BTUH, making the capacity tables easy to utilize with appliance BTU input loads.

DETERMINE THE TYPE OF PIPING LAYOUT WHICH BEST FITS THE INSTALLATION

SERIES SYSTEMS

A series layout is the most common arrangement utilized for rigid pipe systems for low pressure. These usually consist of a main run (header) with tees branching off to each appliance. In a traditional series system, the service pressure down stream of the meter is typically less than 1/2 PSI.

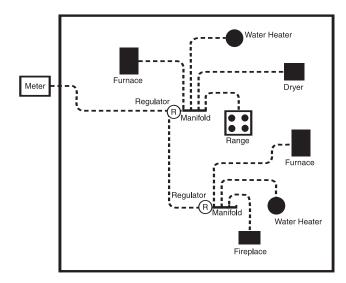
The minimum pressure supplied to any given appliance is an important consideration. To operate properly, most Natural Gas appliances require a minimum of 4"WC pressure and most Propane (Liquefied Petroleum) appliances require a minimum of 10"WC pressure. Allowable pressure drop along any particular run may be dictated by local code restrictions.

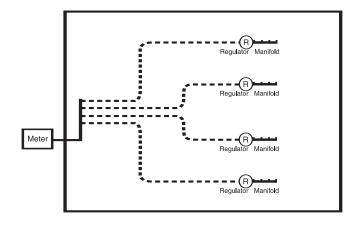

PARALLEL SYSTEMS

In a parallel system, appliances are serviced by individual runs that stem off from a central distribution manifold. A main run from the meter supplies the manifold. The manifold station is located close to the greatest load, typically the boiler or furnace. A parallel layout is most likely to be used in 1/4 to 1/2 psi systems.

3.1.b Dual Pressure Systems

A dual pressure system incorporates two operating pressures downstream from the meter. The first pressure, set by the service regulator at the meter, is usually 2 psi, but can be higher or lower depending on code restrictions and gas company policy. This part of the system is sized separately and ends at the pounds-toinches regulator inlet. The allowable pressure loss for this part of the system must be added to the effect of the regulator to determine the available pressure at the regulator outlet. See chart page 36, Regulator Capacity Table.

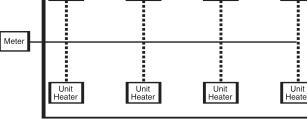

The second pressure, at the outlet of the pounds-toinches regulator is under 1/2 PSI, usually 8"WC for natural gas and 11"WC for propane. Generally, a parallel system requires a higher total footage of smaller diameter tubing and fewer fittings compared to a series layout.



MULTI-UNIT APARTMENT BUILDING

Multiple Manifold Systems

For those installations in which the energy load demand is large or the appliances are installed throughout the structure with long distances from the meter, a multiple manifold system may be used. Elevated pressure systems are a safe, efficient method of providing for larger BTU load demands while maintaining smaller pipe diameters.

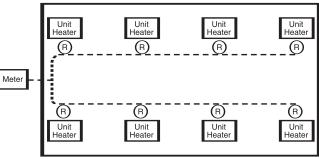


MULTIPLE MANIFOLD SYSTEMS

Combination Steel/CSST System (Hybrid)

In a hybrid system, corrugated stainless steel tubing is used in combination with rigid pipe or copper tubing. In lower pressure systems it is often advantageous to use both CSST and rigid pipe to help minimize pressure drops typically encountered on systems with high loads and/or long runs.

Pro-Flex[®] Flexible Gas Piping systems [both Pro-Flex[®] &


Unit Heater

Unit Heater

HYBRID SYSTEM

Unit Heater Unit Heate

Flak Jacket[™]] are approved for use in combination with all approved fuel gas-piping materials by using approved pipe threads at the interface.

ELEVATED PRESSURE SYSTEM

Elevated Pressure System

In a complete elevated pressure system, corrugated stainless steel tubing is used to deliver pressures in excess of 1/2 psi to a pounds-to-inches regulator positioned directly in front of each appliance regulator. This is an alternate method of installation used to minimize pressure drops typically encountered on systems with high loads and/or long runs.

ALLOWABLE PRESSURE DROP:

Pro-Flex® gas piping systems [both Pro-Flex® CSST and Flak Jacket[™]] are required to be "tested, listed and installed" in accordance with the ANSI/CSA standard for fuel gas piping systems using corrugated stainless steel tubing, ANSI LC-1/ CSA 6.26. This standard, among other things, requires the manufacturer to provide installation instructions including the necessary pipe sizing tables and methods.

With respect to gas piping sizing, the intent of all model codes is to ensure there is sufficient gas volume and gas pressure supplied to the appliance for proper operation.Language from the International Fuel Gas Code clearly illustrates this point.

*"Allowable pressure drop-*The design pressure loss on any piping system under maximum probable flow conditions, from point of delivery to the inlet connection of the equipment, shall be such that the supply pressure at the equipment is greater than the minimum pressure required for proper equipment operation."

Natural gas appliances are typically designed to operate with a minimum inlet pressure of 4.0 inches water column. Propane appliances are typically designed to operate with a minimum inlet pressure of 10.0 inches water column.

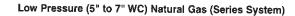
The natural gas capacity tables published by Pro-Flex, LLC, for use with Pro-Flex[®] and Flak Jacket[™] CSST, shall be used to provide for no less than 5" water column pressure to the appliance inlet. The propane capacity tables shall be used to provide no less than 10.5" water column pressure to the appliance inlet.

This can be done by subtracting the desired appliance inlet pressure (5" WC for NG, 10.5" WC for LPG) from the gas source pressure (gas meter for NG, second stage regulator for LPG) to get allowable pressure drop. Use the Pro-Flex[®] capacity table labeled with the appropriate allowable pressure drop and gas type. This will result in an additional pressure drop capacity over the commonly used 1/2" WC drop associated with the Longest Run Method.

Allowable Pressure Drop along any particular run may be dictated by local codes.

F	PRESSURE CONVERSION FACTORS	FUEL GAS INFORMATION		
1/4	psi = 6.921 in w.c. = (approx. 7" WC)	approx. 7" WC) Natural Gas Propane		Propane
1/2	psi = 13.842 in w.c. = (approx. 14" WC)	BTU per Cubic Foot =	1000	2516
1	psi = 27.684 in w.c. = (approx. 28" WC)	Specific Gravity =	0.60	1.52
2	psi = 55.368 in w.c. = (approx. 56" WC)	Note: to determine the CFH of Natural Gas,		<i>'</i>
5	psi = 138.42 in w.c. = (approx. 140" WC)	divide by BTU load by 1000. To determine the CFH of Propane, divide the BTU by 2516		


Reference Data for Proper System Sizing:


3.2 Sizing Methods and Examples

SIZING PROCEDURES FLAK JACKET[™] & PRO-FLEX[°] CSST, FLEXIBLE GAS TUBING

LONGEST LENGTH METHOD EXAMPLE #1

This is a low-pressure series system with four natural gas appliances. The utility company supply pressure exiting the meter is 6 inches water column, and the maximum allowable pressure drop across the longest length from the meter to the farthest appliance is 1/2 inch water column. The gas supplied has a specified gravity of .60 and an energy content of 1 cubic foot per hour equals 1,000 BTU per hour.

APPLIANCE LOAD	S +GAS LOAD	LENGTH OF RUN
FURNACE	75 CFH (75,000 BTUH/1000 PER CF	H) 14 FEET
OVEN/RANGE	45 CFH (45,000 BTUH/1000 PER CF	H) 20 FEET
DRYER	25 CFH (25,000 BTUH/1000 PER CF	H) 38 FEET
WATER HEATER	24 CFH (24.000 BTUH/1000 PER CF	H) <u>50 FEET</u>

LENGTH OF EACH RUN

A =	8 FEET	EXAMPLE:
B =	10 FEET	Furnace: A (8 ft) + F (6 ft) = <u>14 FEET</u>
C =	12 FEET	Oven/Range: A (8 ft) + B (10 ft) + E (2 ft) = <u>20 FEET</u>
D =	20 FEET	Dryer: A (8 ft) + B (10 ft) + C (12 ft) + G (8 ft) = <u>38 FEET</u>
E =	2 FEET	Water Heater: A (8 ft) + B (10 ft) + C (12 ft) + D (20 ft) = 50 FEET
F =	6 FEET	THE LONGEST RUN IS FROM THE METER TO THE WATER HEATER; OVER 50 FEET.
G =	8 FEET	

SIZING SECTION A:

Length A must be sized to handle the total load of all appliances and the total pressure drop from the meter to the farthest appliance. The total appliance load is 169 CFH. Using the longest length sizing method, the length is 50 ft. to the water heater. Referring to Table 1, (6" WC inlet pressure and 1/2" WC pressure drop) under the 50 ft. length column, we find that 1 inch size has the flow capacity exceeding 169 CFH (171 CFH). Use 1" tubing to run Section A.

SIZING SECTION B:

Section B must supply the water heater, dryer and range. The total pressure drop for the system is considered to be from the meter to the water heater (farthest appliance). The total appliance load is 24+25+45 = 94 CFH. Using the longest length sizing method, the length is 50 ft. (distance from meter to water heater). Referring to Table 1 under the 50 ft. length column, we find that size 1 inch has flow capacity over 94 CFH (171 CFH). Use 1" tubing to run Section B.

SIZING SECTION C:

Section C must supply the water heater and dryer. The total appliance load is 24+25 = 49 CFH. Using the longest length method, the length is 50 ft. Referring to Table 1 under the 50 ft. length column, we find that 3/4 inch has flow capacity above the 49 CFH (89 CFH) Use 3/4" tubing to run Section C.

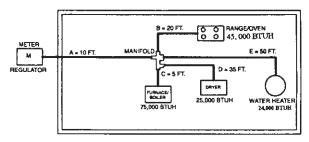
SIZING SECTION D:

Section D must supply the water heater. The total appliance load is 24 CFH. Using the longest method, the length is 50 ft. Referring to Table 1 under the 50 ft. length column, we find that 1/2 inch has flow capacity above 24 CFH (32 CFH). Use 1/2" tubing to run Section D.

SIZING SECTION E:

The total appliance load is 45 CFH. Using the longest length method, the length is 50 ft. Referring to Table 1 under 50 ft. length column, we find that 3/4" has flow capacity above 45 CFH (89 CFH) Use 3/4" tubing to run Section E.

SIZING SECTION F:


The total appliance load is 75 CFH. Using the longest length method, the length is 50 ft. Referring to Table 1 under 50 ft. length column, we find that 3/4" has flow capacity above 75 CFH (89 CFH) Use 3/4" tubing to run Section F.

SIZING SECTION G:

The total appliance load is 25 CFH. Using the longest length method, the length is 50 ft. Referring to Table 1 under 50 ft. length column, we find that 1/2" has flow capacity above 25 CFH (32 CFH) Use 1/2" tubing to run Section G.

EXAMPLE #2, MEDIUM PRESSURE PARALLEL SYSTEM

This is a medium-pressure parallel system which includes a distribution tee manifold. The natural gas supply pressure is 1/2 psig and the maximum allowable pressure drop from the meter to the farthest appliance is 6" WC.

Medium Pressure (1/2 psig) Natural Gas (Parallel System)

Appliance Loads	Lengths	size
Oven/Range 45 CFH Furnace = 75 CFH Dryer = 25 CFH Water Heater = 24CFH	A= 10 FT B= 20 FT C= 5 FT D= 35 FT E= 50 FT	3/4" 3/8" 3/8" 3/8" 3/8"
TOTAL CFH 169 CFH		

SIZING, SECTION A:

Determine distance from the meter to the farthest appliance (water heater 60 ft.) Determine the total appliance load supply by Section A (169 CFH). Referring to Table 4 under the 60 ft. length column, we find 3/4 inch has flow capacity above 169 CFH (274 CFH). Use 3/4" tubing to run Section A.

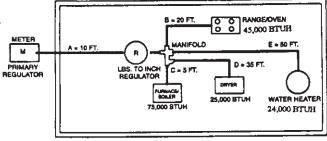
SIZING SECTION B:

Section B supplies the oven/range. The total pressure drop is considered from the meter to the oven/range. The total appliance load is 45 CFH and the length is 10 ft + 20 ft. = 30 feet total. Referring to Table 4 under the 30 ft. length col-umn, we find that 3/8 inch has a flow capacity above 45 CFH (94 CFH). Use 3/8" tubing to run Section B.

SIZING SECTION C:

Section C supplies the furnace. The total appliance load is 75 CFH and the total length is 10 ft. + 5 ft. = 15 ft total. Referring to Table 4 under the 15 ft. length column. We find that 3/8 inch has a flow capacity above 75 CFH (134 CFH) Use 3/8" tubing to run Section C.

SIZING SECTION D:


Section D supplies the dryer. The total appliance load is 25 CFH and the total length from the meter is 10 ft. + 35 ft. = 45 feet total. Referring to Table 4 under the 45 ft. length column. Since 45 ft. does not appear in the table, use the next longest run column of 50 ft. We find that 3/8 inch has a flow capacity above 25 CFH (73 CFH) Use 3/8" tubing to run Section D.

SIZING SECTION E:

Section E supplies the water heater. The total appliance load is 24 CFH and the total length from the meter to appliance is 10 ft + 50 ft = 60 feet total. Referring to Table 4 under the 60 ft. length column, we find that 3/8 inch has a flow capacity above 24 CFH (65 CFH) Use 3/8" tubing to run Section E.

EXAMPLE #3 - ELEVATED DUAL PRESSURE SYSTEM

This is a 2 psig supply pressure parallel arrangement. The natural gas system incorporates a pressure reducing regulator with a distribution tee manifold located closely to several large capacity appliances. The inlet pressure downstream of the meter is 2 psig, and the designated maximum pressure drop from the meter to the reducing regulator is 1.0 psig. The outlet pressure from the regulator is set at 8 inches water column. A 3" WC pressure drop is used in sizing the tubing from the regulator outlet to each appliance. Specific gravity of the gas delivered is .60 and energy content is 1 CFH = 1,000 BTUH.

Elevated (2 psig) Dual Pressure Natural Gas (Parallel System)

Total load and regulator size:

Calculate the total appliance load and determine if one regulator has sufficient capacity to supply this load. One regulator is normally adequate when appliances are close together. When groups of high-load appliances are widely separated, it is often more economical to use one pressure reducing regulator to supply each appliance group. The total appliance load required is 169 CFH (169,000 BTUH).

The supply pressure from the meter is 2 psig and the designated pressure drop from the meter to the regulator is 1 psig; thus the

APPLIANCE LOADS	LENGTHS	TUBE SIZE
METER TO REGULATOR	A= 10 FEET	3/8"
OVEN/RANGE = 45 CFH	B = 20 FEET	3/8"
FURNACE = 75 CFH	C = 5 FEET	3/8"
DRYER = 25 CFH	D = 35 FEET	3/8"
WATER HEATER=24 CFH	<u>E = 50 FEET</u>	3/8"
TOTAL	169 CFH	

minimum inlet pressure to the regulator is 1 psig. Since the outlet pressure of the regulator is set at 8" WC, the expected pressure drop across the regulator is 20 inches WC (1 psig - 8" WC = 20" WC). A single 325-3 regulator has a flow rate capacity of 252 CFH. This capacity exceeds the system requirement of 169 CFH. In cases where the 325-3 regulator capacity is insufficient, a larger #325-5A regulator or parallel arrangement of two regulators should be used.

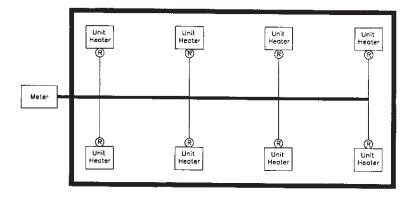
SIZING SECTION A (METER TO REGULATOR):

Section A must be sized to handle all appliances loads and supply the pressure reducing (pounds to inches) regulator. The total load is 169 CFH and the length is 10 ft. The supply pressure is 2 psig and the pressure drop is 1 psig. Referring to Table 5 (meter to regulator with 2 psig inlet and 1 psig drop) under the 10 ft. column, we find that 3/8 inch has capacity over 169 CFH (332 CFH). Use 3/8" tubing to run Section A. To size the other sections, the pressure source is the outlet of the pressure regulator rather than the meter. Use the low-pressure Table 3 (8.0" WC inlet with 3.0" WC drop) and size each section individually using the appliance load and run distance.

SIZING SECTION B

Section B supplies the oven/range. The load is 45 CFH and the distance between the regulator outlet and appliance is 20 ft. The total pressure drop is from the outlet of the reducing regulator to the oven/range. The outlet pressure from the regulator is 8" WC and the pressure drop is 3" WC. Referring to Table 3, under the 20 ft. length column, we find that an 8 inch has a flow capacity above 45 CFH (81 CFH). Use 3/8" tubing to run Section B.

SIZING SECTION C:


Section C supplies the furnace. The load is 75 CFH and the distance is 5 ft. Referring to Table 3, under the 5 ft. length column, we find that 3/8 inch has a flow capacity above 75 CFH (162 CFH). Use 3/8" tubing to run Section C.

SIZING SECTION D:

Section D supplies the dryer. The load is 25 CFH and the distance is 35 ft. Referring to Table 3, and since a 35 ft. length column does not exist, use the 40 ft. length column. We find that 318 inch has a flow capacity above 25 CFH (58 CFH). Use 3/8" tubing to run Section D.

SIZING SECTION E:

Section E supplies the water heater. The load is 24 CFH and the distance is 50 ft. Referring to Table 3, under the 50 ft. length column, we find that 3/8 inch has a flow capacity above 24 CFH (51 CFH). Use 3/8" tubing to run Section E.

(Hybrid system)

It is often to your advantage to use both CSST and rigid pipe to help minimize pressure drops typically encountered on systems with high loads and/or long runs. Flexible gas piping systems by Pro-Flex, LLC [both Pro-Flex®CSST and Flak JacketTM] are approved for use in combinations with approved gas piping materials by using approved pipe threads at the interface. For sizing use longest run method assuming the complete run is CSST.

4.0 Installation Practices

4.1 General Installation Practices

- **Pro-Flex**[®] flexible gas piping systems [both **Pro-Flex**[®] **CSST** and **Flak Jacket**[™]] may only be installed by a Qualified/ Trained installer who has been trained in the use of **Pro-Flex**[®]. A **Pro-Flex**[®] /**Flak Jacket™** Qualified installer card is required to purchase and install Pro-Flex[®]'s flexible gas piping.
- Only the components provided or specified by Pro-Flex, LLC, (including Pro-Flex's striker plates and floppy flex armor conduit) are to be used as part of the piping system in the installation. Tubing or fittings from other manufacturer' CSST systems shall not be intermingled with Pro-Flex® tubing [Flak Jacket[™] or Pro-Flex® CSST] or fittings.
- Never use **Pro-Flex**[®] flexible gas piping or components as a ground electrode or as a grounding path for appliances or electrical systems.
- Pro-Flex[®] flexible gas piping systems [both Pro-Flex[®] CSST and Flak Jacket[™]] routed in a location which is concealed, constrained, and within 3 inches of a potential threat will be protected against damage by protection devices listed in the **Pro-Flex**[®] Installation/Training Guide. The extent of protection is defined as follows:
 - a. At all points of penetration less than 2 inches [50.8mm] from any edge of a stud, joist, plate, etc., a striker plate is required to provide protection at the area of support and within 5 inches [127mm] of each side [if appropriate] of the support.
 - b. At points of penetration 2 to 3 inches [50.8 76.2mm] from any edge of a stud, joist, plate, etc., a striker plate is required to provide protection throughout the area of support.
 - c. At points of penetration greater than 3 inches [76.2mm] from any stud, joist, plate, etc., no protection is required.
 - d. Tubing routed horizontally through studs shall be protected from puncture threats using shielding devices provided.

Piping that is constrained by rigid foam insulation shall be protected along it's entire length. In addition, any

exposed stainless that may come in contact with spray foam insulation must be wrapped with self sealing silicone tape.

- CSST greater than 1 inch [25.4mm] inside diameter installed within hollow wall cavities of 2 x 4 construction shall be protected along the entire concealed length using the shielding devices specified by the manufacturer.
- The width of the installed striker plate, at the point of penetration through studs, joists, plates, etc., shall be at least 1.5 times the outside diameter of the tubing.
- Open ends of the tubing are to be temporarily plugged or taped closed prior to installation to prevent the entrance of dirt or other debris.
- Contact with sharp objects and harmful substances are to be avoided. The protective jacket should be kept in place as much as possible to protect the tubing from corrosive threats. Contact with chemicals containing chlorides or ammonia [these chemicals include leak test solutions, fluxes used to solder copper tubing, and acid based cleaners used to wash masonry] must be followed by a thorough rinse with water and wipe dry.
- Installation clearance holes for routing CSST are to be approximately 1/2" larger than the outside diameter of the CSST [see Table 4.1]. Drilling of any structural member must be in conformance with local building codes.
- CSST tubing shall be supported with pipe straps, bands or hangers suitable for the size and weight of the tubing, at intervals not to exceed those shown in Table 4.2. When supporting CSST tubing runs, the use of other conductive systems such as vents, ducting, piping and cables [electrical or communication] are prohibited.
- Recommended Minimum Bend Radius for CSST [see Table 4.3].

Table 4.1

Minimum Horizontal/Inclined and Vertical Support Spacing for Pro-Flex® & Flak Jacket CSST			
Horizontal/Inclined Vertical			
Tubing Size	Support Spacing	Support Spacing	
3/8" (10mm)	4 ft.	10 ft*	
1/2" (15mm)	6 ft.	10 ft*	
3/4" (20mm)	8 ft (USA) 6 ft (Canada)	10 ft*	
1" (25mm)	8 ft (USA) 6 ft (Canada)	10 ft*	
1 1/4" (31mm) 8 ft (USA) 6 ft (Canada) 10 ft*		10 ft*	
* hangers only required if height of each floor >10 ft.			

Table 4.2

Table 4.3

Recommended Clearance Holes for Routing CSST			
Tubing Size	Drill Hole Size		
3/8" (10mm)	1 1/8" (28mm)		
1/2" (15mm)	1 3/8" (35mm)		
3/4" (20mm)	1 1/2" (38mm)		
1" (25mm)	1 3/4" (45mm)		
11/4" (31mm)	2 1/4" (57mm)		

	Minimum Bend Radius for Flak Jacket TM & Pro-Elex® CSST				
	Absolute	Recommended			
Tubing Size	Min. Bend	Min. Bend			
	Radius	Radius			
3/8" (10mm)	9/16"	3"			
1/2" (15mm)	3/4"	3"			
3/4" (20mm)	1.0"	3"			
1" (25mm)	3.0"	5"			
11/4" (31mm)	3.0"	5"			

- 0 **h 7 7 K ^{uU}** #cou **h 7** @ u 8 V7h° @8# yh#
- h 7 7 K ^{uU} #cou Connections to moveable appliances such as ranges and clothes dryers should be accomplished with a "flexible gas appliance connector."
- Regulators are suitable for multi-poise mounting. When using a vent limiting device, the regulator must be mounted in a horizontal upright position. For outdoor venting, the vent line must be at least the same size as the vent connection and no longer than 30 feet before upsizing. When mounting a regulator outdoors, remove the vent limiting device and position regulator inverted with open port down.
- A manifold assembly utilizing a pounds-to-inches regulator shall include a shut-off valve ahead of the regulator and installed in an accessible location so that the regulator can be inspected, maintained and serviced if necessary.
- Buried or Embedded: CSST shall not be buried directly in the ground or directly embedded in concrete (i.e.: patio slabs, foundations and walkways) When it is necessary to bury or embed CSST, the tubing shall be routed inside a non-metallic, watertight conduit that has an inside diameter at least 1/2 inch greater than the O.D. of the CSST tubing. For ends of conduit installed outdoors, the conduit shall be sealed at any exposed end to prevent water form entering. No mechanical joint fittings are permitted within the conduit. *Note: CSST must be buried in accordance with all local building codes.*
- Pro-Flex[®] flexible gas piping systems [Flak Jacket[™] and Pro-Flex[®] CSST] must be pressure tested for leaks during rough construction in accordance with all local codes. In the absence of local requirements, test in accordance with Part 4 of the NFPA 54, National Fuel Gas Code ANSI Z223.1 and/or CSA B149.1 Installation Codes or in accordance with the requirements of the applicable local codes. For a 'one-part' pressure-test, the regulator shall be removed from the system. For a 'two-part' test, the regulator should be isolated from downstream test pressures.
- Alongside a structure: When installed alongside a structure, between the ground and a height of 6 feet, in an exposed condition, the CSST shall be protected from mechanical damage inside a conduit or chase. A conduit or chase is not required if the tubing is installed in a location that will not subject the tubing to mechanical damage.
- Meter Hook-Ups. Refer to the Pro-Flex[®] installations and illustrations shown in this training guide. CSST shall not be used as a means of support for the gas meter. Also check with your local code official or authority having jurisdiction on meter hook-ups. Some restrictions may apply. Local code requirements will always take precedence.
- For a Piping system which includes manual gas valves listed as complying with ASME B16.44. Manually operated metallic gas valves for use in above ground piping systems up to 5 psi. An approved valve must be used.
- Pro-Flex[®] Flexible Gas Piping (Flak Jacket[™] or Pro-Flex[®] CSST) shall not be directly routed into a metallic gas appliance enclosure that penetrates the roof-line. The connection shall be outside of the enclosure to a section of rigid pipe or stub-out. In instances where the appliance is not vented above the roof-line, such as decorative fireplaces, the CSST tubing must be protected by grommets, bushing or armor (Floppy-Flex) tape tape, shrink sleeve material or a minimum of four (4) wraps of #10 Mil Duct-Tape. This is to ensure that no physical contact will be made between will be made between the metal and the CSST tubing that could cause mechanical wear.
- Pro-Flex, LLC requires direct bonding for Pro-Flex[®] [yellow] CSST in accordance with NFPA 54 Section 7.13. Pro-Flex, LLC has no additional bonding requirements for Flak Jacket[™] Arc-Resistant CSST [it must be bonded in the same manner as rigid pipe per NFPA 70 Article 250.104 (B)]. However, installers must always comply with any local requirements which may be more strict than these instructions. See section 4.10 of this guide for detailed bonding instructions.

ASSEMBLY PROCEDURES FOR PRO-FLEX[®] & FLAK JACKET[™] CSST

STEP #1:

Secure NPT end of the fitting to the fixed connection. Use appropriate sealant on the NPT threads.

STEP #2:

Using a utility knife or scissor-style plastic pipe cutter, cut through the coating [around the entire circumference of the jacket] in the fourth [4th] valley and remove jacket from the tubing end. Note: Carefully cut jacket material only.

STEP #3

Slide nut over CSST tubing with threaded end pointing toward cut end of tubing.

STEP #4

By hand, open Retainer Ring [split stainless steel] wide enough to fit in the fourth [4th] valley and squeeze ring by hand to close. **Do not break the retainer ring in half.**

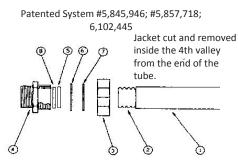
STEP #5

Place Slide [solid stainless steel] Ring over the tube end and slide it down to the Retainer Ring.

STEP #6

Roll Silicone O-Ring [red/orange] over tube end and roll/ slide it down to meet the slider ring.

STEP #7


Ensure the high temperature gasket [brown] is in place in the base of the fitting.

STEP #8

Place tube into fitting end. Tighten nut hand tight, then tighten nut additional 1/4 to 1/2 turn with a pair of wrenches. **Do not use thread sealant on the threads where the nut threads onto fitting.**

When installing Flak Jacket [™] Arc-Resistant CSST, any exposed stainless steel must be covered by wrapping with self-bonding silicone tape [such as PFRT-50P]

- 1. Polyethylene Jacket [Yellow or Black]
- 2. 304 Stainless Steel Corrugated Tubing
- 3. Brass Mechanical Nut
- 4. Brass Mechanical Fitting
- 5. Silicone O-Ring [orange/red]
- 6. 304 Stainless Steel Slide Ring [solid]
- 7. 304 Stainless Steel Slide Ring [split]
- 8. High Temperature Gasket [brown]

Proper Cutting of Flak Jacket[™] and Pro-Flex[®] CSST

- CSST is to be cut with a tubing cutter. The cut is to be made in a valley between corrugations. Use light pressure [too much pressure may deform the tube where it is being cut] and multiple revolutions, tighten the cutter approximately 1/4 turn per revolution. The cut is to be free of burrs and distortions.
- After the tubing has been cut, trim the jacket . Use a sharp utility knife or scissorsstyle plastic tubing cutter with the blade positioned in the 4th valley; cut around the diameter of the tube and remove the small piece of the jacket.

Trouble Shooting / Re-assembling a Mechanical Fitting

CORRECTING LEAKS...

- 1. Gradually tighten fitting until leak stops
- 2. If tightening does not stop after reaching maximum torque of 35 lbs or 50 lbs [refer to maximum torque for each size listed below].

STOP and open assembly and

check...

- a. To see if they are properly assembled. If not correct, go through assembly steps and test again for leaks.
- b. Check to see that no foreign material is in assembly. If so, clean out and re-assemble and test again for leaks.
- c. Check to see that none of the assembly pieces are cracked. If so, replace, re-assemble and test again for leaks.
- d. Ensure use of Pipe tape or Pipe Dope on NPT Threaded Ends.

How to Disassemble a Pro-Flex Mechanical Fitting:

- a. Remove nut
- b. Remove Retainer Ring first, then Slide Ring, then O-ring.
- c. Replace any damaged component.
- d. Re-Assemble per instructions on page 18.

Maximum Allowable Nut Tightening Torques for Connecting Fittings to Corrugated Stainless Steel

L	Size of Fitting	Maximum Allowable Tightening Torque	
	3/8" (10mm)	35 ftlb.	
ſ	1/2" (15mm)	35 ftlb.	
I	3/4" (20mm)	50 ftlb.	
ſ	1" (25mm)	50 ftlb.	
	1¹/4" (31mm)	50 ftlb.	

TORQUING METHOD FOR FIELD ASSEMBLY

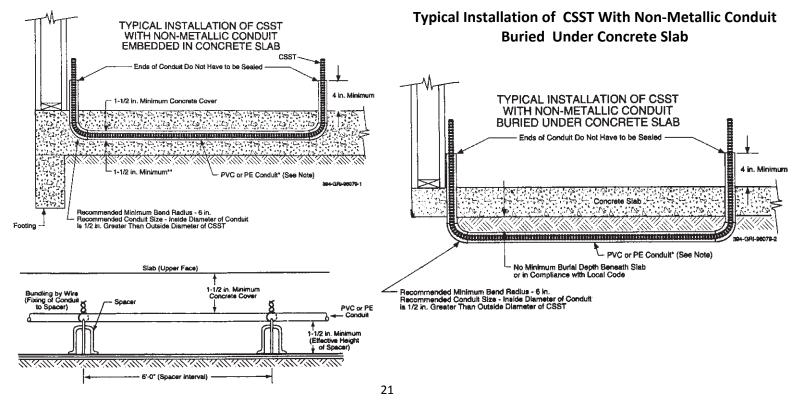
To achieve the proper Torque without a torque wrench, first tighten the fitting adapter to the nut until resistance to hand tightening is so that you can no longer continue. Then, using a crescent wrench, tighten to 1/4 to 1/2 turn.

CAUTION: DO NOT OVER TIGHTEN!

4.3 Routing

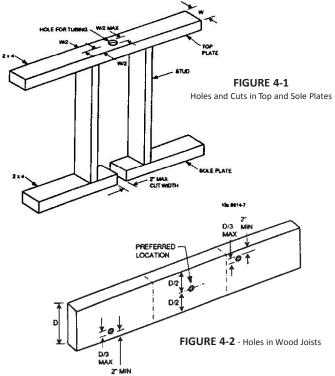
- Flexible gas piping systems manufactured by Pro-Flex, LLC [both **Flak Jacket[™] & Pro-Flex**^{*} **CSST**] can be routed beneath, through and along side floor and ceiling joists. Consideration must be given to future construction possibilities. *Care should be taken when installing to maintain as much separation as reasonably possible from other electrically conductive systems in the building.*
- **Pro-Flex**^{*} & **Flak Jacket**[™] can be routed inside hollow wall cavities. This is the preferred for vertical sections of piping rather than horizontal sections. Avoiding horizontal runs through the walls will minimize the need for protection. When constrained from moving by spray foam insulation, the tubing must be protected from puncture by the specified protective devises.
- **Pro-Flex**^{*} & **Flak Jacket**[™] can be routed on top of ceiling joists. This is the preferred method of routing in areas where slab-on-grade construction is prevalent and is considered to be supported by the joists.
- **Pro-Flex**[®] & **Flak Jacket**[™] are listed to ANSI LC- 1 CSA 6.26, which includes testing for suitability for exposure of CSST piping systems to outdoor environments.
- *Note:* Care should be taken when installing any type of fuel gas piping (Inc: CSST, Iron or Copper) to maintain as much separation as reasonably possible from other electrically conductive systems in the building.
- **Note:** Manufactuer's design and installation instructions, or instructions supplied with the part by the valve manufacturer, shall include data on sizing and pressure drop across the device as a function of flow (up to the activation flow rate) for each size valve. When an excess flow valve is supplied as part of the gas piping system, the CSST.
- **Note:** Consult local building codes as to required separations for CSST from such conductive systems including metallic chimney liners, metallic appliance vents, metallic ducting and piping and electrical cables.

Through Wall Penetrations and Plenums

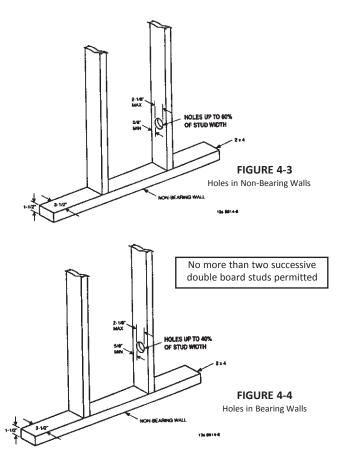

FIRE STOPS:

- **Pro-Flex® CSST** with its polyethylene yellow jacket has been tested to the flame spread and smoke density requirements of ASTME84 and meets limits imposed for this criteria. Pro-Flex® nonmetallic coating has an ASTME-E84 flame spread of less than 25 and ASTM-E84 smoke density of less than 50. Other requirements for the fire rated resistive constructions may be imposed by local codes. The qualified/trained installer must meet local building codes with respects to flame and smoke density regulations for non-metallic materials at all times.
- For Flak Jacket[™] Arc-Resistant CSST with its black jacket, the installer shall address local building codes with respect to flame spread and smoke density requirements for non-metallic materials, Pro-Flex, LLC recommends either removing the black jacket or transitioning to rigid pipe when passing through such areas.

Outdoor Installation Guidelines


- a) OUTDOORS: When Pro-Flex[®] or Flak Jacket[™] CSST are installed outdoors, the external jacket shall remain intact as much as possible for the given installation. Any portions of the exposed stainless steel tubing shall be wrapped with self bonding silicone tape [PFRT-50P] or sleeved to prevent later threats by acids or chlorides such as cleaning solutions for masonry.
- b) BURIED or EMBEDDED: Pro-Flex^{*} & Flak Jacket[™] CSST <u>SHALL NOT</u> be buried directly in the ground or directly embedded in concrete (patio slabs, foundations or walkways) When necessary, to bury or embed CSST, the tubing shall be routed inside a non-metallic, watertight conduit that has an inside diameter at least 1/2 inch larger than the O.D. size of the CSST tubing. The ends of the conduit installed outdoors, must be sealed at any exposed end to prevent water from entering. NOTE: No mechanical joint fittings are permitted in the conduit. (See page: 20)
- c) ALONG SIDE A STRUCTURE: When **Pro-Flex**[®] or **Flak Jacket**[™] **CSST** are installed along the outside of a structure (between the ground and a height of 6 ft) in an exposed condition, the CSST tubing shall be protected from mechanical damage inside a conduit or chase. A conduit or chase is not required if the tubing is installed in a location that will not subject the CSST to mechanical damage.

Typical Installations of CSST With Non-Metallic Conduit Embedded In Concrete Slab



Clearance Holes & Notching

- a. Bored Holes In locations where CSST is installed through bored holes in joists, rafters, or wood members, holes shall be bored so that the edge of the hole is not less than 2 in. (50.8 mm) from the nearest edge of the wood member. Where this distance cannot be maintained at any point, the CSST shall be protected by a listed striker plate of the appropriate length and width installed in accordance with the manufacturers installation instructions. The diameter of the bored holes shall be a minimum of 1/2 in. (12.7 mm) larger than the outside diameter of the tubing.
- b. The size of the hole drilled through top plates, top frame members, and sole plates, to allow the vertical passage of the tubing, shall not exceed 1/2 of the width of the member. The hole should be bored through the center of the member. (See figure 4-1.)
- c. Where soles or plates are cut for tubing, the width of the cut shall be 1/2 in. (12.7 mm) larger than the outside diameter of the tubing but not greater than 2 in. (50.8 mm), and the tubing must be protected with a listed striker plate of the appropriate length and width installed in accordance with the manufacturers installation instructions. (See figure 4-1.)
- d. Where a hole is to be bored in a joist, the hole should be located at the centerline, otherwise no closer than 2 in. (50.8 mm) from the nearest edge of the joist, and the hole diameter shall not exceed 1/3 the depth of the ioist.

- e. Where holes are to be bored in non-bearing vertical members of the wall framing, the size of such holes shall not be larger than 60 percent of the width of the member. (See figure 4-3.)
- f. Where holes are to be bored in bearing vertical members of the wall framing, the size of such holes shall not be larger than 40 per-cent of the width of the member. Holes up to 60 percent of the member's width are permitted if the members are doubled. No more than two successive double bored members are permitted. (See figure 4-4.)
- g. Installing CSST in notches cut in either the top or bottom of joists are prohibited.

The size and depth of installation clearance holes or notches for routing the tubing through wall studs and joists shall comply with the requirements of the local building code.

CSST THROUGH METAL FRAMING

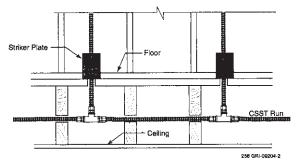
- When CSST passes through metal framing members, it shall be installed and protected in accordance as follows:
- b. When using **Pro-Flex*** Flexible Gas Piping (CSST) through Metal framing the CSST tubing must be protected by grommets, bushing or armor (Floppy-Flex^{*}), PVC tape, shrink sleeve material or a minimum of four (4) wraps of #10 Mil Duct-Tape. This is to ensure that no physical contact will be made between the metal and the CSST tubing that would cause mechanical wear.

DRILLING:

Drilling holes should be made approx. 1/2" greater than the outside diameter of the CSST Tubing.

Recommended Clearance Holes for Routing CSST			
Tubing Size	Drill Hole Size		
3/8" (10mm)	1 1/8" (28mm)		
1/2" (15mm)	1 3/8" (35mm)		
3/4" (20mm)	1 1/2" (38mm)		
1" (25mm)	1 3/4" (45mm)		
11/4" (31mm)	2 1/4" (57mm)		

CONCEALED FITTINGS LOCATION


Pro-Flex, LLC's Mechanical Fittings have been tested and listed per the requirements of ANSI LC-1 - CSA 6.26 for concealed use. The fitting may be used for concealed attachment to appliance valves, branch runs using tee fittings, and length splices.

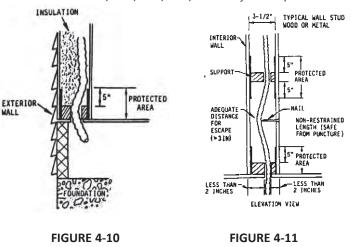
These guidelines address some of the most common situations where concealing the fittings is the only practical alternative. These guidelines cannot address all applications of concealed fittings, but instead, provide typical instructions to demonstrate the principles that apply to fittings listed for installation in concealed locations. (reference National Fuel Gas Code, NFPA 54, Section 3.4.2)

- a) New Installations When multiple gas outlets are supplied from a single run of CSST, each downstream outlet branch can be connected to the main run using a tee-type fitting which can be located in a concealed location.
- b) Fireplace "key valves" Flexible piping connections to fireplace key valves can be located in a concealed location, when accessibility is not readily provided.
- c) Exclusion Manifold stations (2 PSI system), which include the multi-port manifold, shut-off valve and pressure regulator, shall not be installed in concealed locations regardless of the qualifications of the tubing.

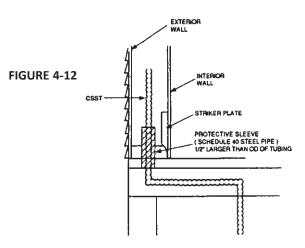
Modifications to Existing Systems

- a) New Ceilings in Unfinished Rooms/Basements CSST fittings originally installed in accessible ceiling locations can be concealed in the event a ceiling is installed at a later date.
- b) Extensions to Existing Tubing Runs -A concealed tubing can be modified to permit an extension to another appliance location provided there is sufficient capacity to supply both appliances at the same time. If an accessible location for the modification is not available, the existing tubing run can be modified with a tee fitting which will result in a concealed fitting behind the wallboard.

- c) Repairs to Existing Tubing Runs Damaged tubing runs shall be repaired in accordance with the instructions in this guide. The repair can result in a line splice that may ultimate-ly be located in a concealed location.
- d) Concealed tubing shall be protected from puncture threats, using the shielding devices specified by the manufacturer, at all points of penetration through studs, joists, plates or similar structures. The extent of protection shall be defined as follows:
 - 1. At points of penetration less than 2 in (50.8 mm) from any edge of a stud, joist, plate, etc., a listed striker plate is required to provide protection at the area of sup-port and within 5 in (127 mm) of each side (if appropriate) of the support.
 - 2. At points of penetration 2 to 3 in (50.8 mm to 76.2 mm) from any edge of a stud, joist, plates, etc., a listed striker plate is required to provide protection throughout the area of support.
 - 3. At points of penetration greater than 3 in (76.2 mm) from any edge of a stud, joist, plate, etc., no protection is required.
 - 4. Tubing routed horizontally through studs shall be protected from puncture threats between the studs using the shielding devices provided.
 - CSST greater than 1-in (25.4 mm) inside diameter installed within hollow cavity walls of 2" x 4" construction shall be protected along the entire concealed length in the manner and using the shielding devices specified by the manufacturer.
 - 6. The width of the installed striker plate, at the points of penetration through wall studs, floor joists, plates, sills, etc., shall be out at least 1.5 times the outside diame-ter of the tubing.


4.4 Protection

PROTECTION IS REQUIRED WHEN CSST TUBING IS CONCEALED, CONSTRAINED AND WITHIN 3 INCHES OF A POTENTIAL THREAT.


Pro-Flex[®] & **Flak Jacket**[™] must be protected where puncture or other physical damage threats exist. Install protection devices, i.e. striker plates as shown, to protect the installed tubing from penetrations by drill bits, nails, screws and in those areas where the tubing is concealed and will not be free to move to avoid such puncture threats. [*This includes areas where the tubing is constrained by spray foam insulation.*]

- Flexible gas tubing must be protected when it is concealed, constrained, and within 3" [76.2mm) of an interior surface.
- A 2 x 4 will always require protection because any and all clearance holes for tubing will be less than 3" [76.2mm] away from the edge.
- Protection/Shielding is required 5" [127mm] [each side where appropriate] beyond the support area when points of penetration are less than 3" [76.2mm] from any edge of structural members. Refer to figures 4-10, 4-11, 4-15, 4-16, and 4-18 for examples.

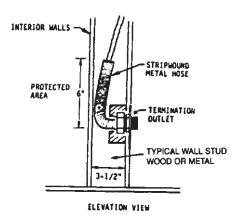
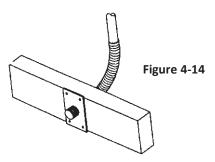
Long Unsupported Vertical Tubing Rugs (over 3 ft.) within a Hollow Interior Wall Partition. Shielding Required at Support Area When Points of penetration are Less than 2" From any Wall Surface.

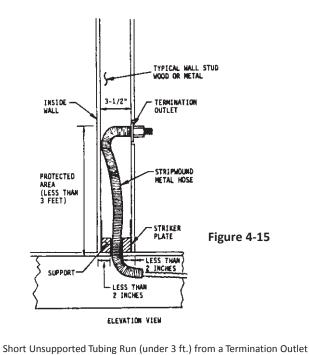
When the exterior wall is finished before the installation of the gas tubing and a striker plate cannot be installed, a protective schedule 40 steel pipe sleeve shall be placed around the tubing. The sleeve shall be secured to the sill or stud, be at least 1/2in. (12.7mm) larger in its internal diame-ter than the O.D. of the CSST, and extend no more than 4 in.(100 mm) above the sill or beyond the stud. A striker plate shall also be placed on the accessible side of the sill or stud as required.

Where Finished Exterior Wall Does Not Permit Installation of Striker Plate, Protective Sleeve is Required.

Install Floppy-Flex strip wound steel conduit, which is another protection device, which can and should be used at points of support such as gas outlet terminations, short tubing runs and where tubing is routed horizontally between studs. Strip wound (Floppy-Flex) is required along the length within a wall partition when tubing cannot be displaced a minimum of 3" (76.2mm) or if distances between supports are less than 2 ft.

NOTE: The ID of the conduit [Floppy-Flex] must be at least 1/2" larger than the OD of the CSST Tubing.


Figure 4-13

Only Pro-Flex supplied, hardened striker plates, listed for use with CSST systems may be used.

Long Unsupported Vertical Tubing Run (over 3 ft.) from a Termination Outlet Within a Wall Partition. Shielding Required At Termination Outlet and Along Tubing Length That Is Non-supported and Cannot Be Displaced a Minimum of 3 in. in the Direction Away From Potential Penetration.

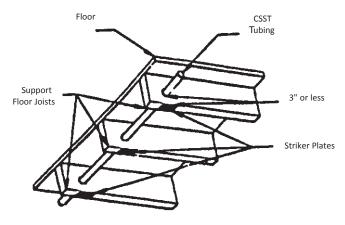
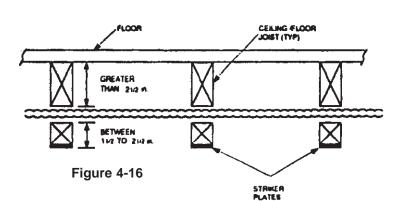



Figure 4-18 CSST Tubing Going Through Joists Within 3" of Potential Nailing Surface.

within a Wall Partition. Shielding Required at Support Area (studs) when

Point of Penetration are Less than 2 in. from any Outside Surface.

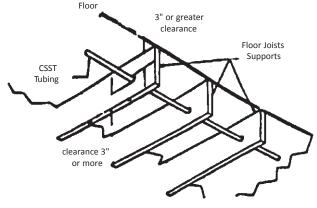
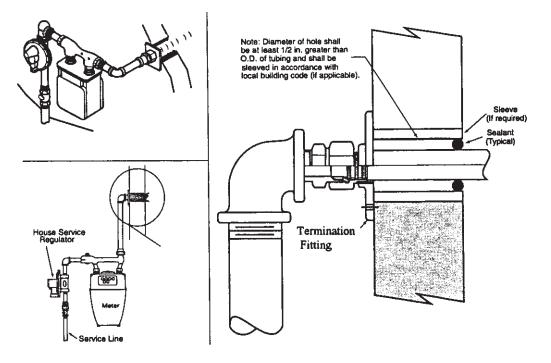


Figure 4-19

CSST Tubing Going Through Joists With More than 3" of Clearance from Potential Nailing Surface do not require protection.

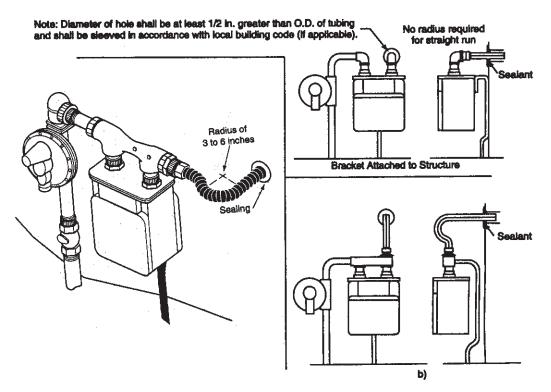
Shielding Required at Support Area when Point of Penetration are between 1-1/2 to 2-1/2 in. from any Edge of a Stud, Joist, Plate, etc.


GUIDELINES FOR INSTALLATION OF PRO-FLEX[®] & FLAK JACKET[™] CSST FLEXIBLE GAS PIPING IN OUTDOOR APPLICATIONS [INCLUDING CORROSIVE ENVIRONMENTS]

Pro-Flex[®] & **Flak Jacket**[™] tubing and fittings meet all performance requirements for outdoor applications and comply with the ANSI LC1 / CSA 6.26 standard. The following guidelines apply to both **Pro-Flex**[®] & **Flak Jacket**[™] **CSST** when installed outdoors or in other corrosive environments [including but not limited to: crawlspaces, pool mechanical rooms, and etc.]

- In outdoor applications, the external jacket should not be removed. All exposed tubing on the outside of a structure or located between the ground and a 6 ft height must be protected in a sealed conduit or weather-tight chase which is routed and secured to avoid mechanical damage.
- Any exposed stainless steel is to be wrapped with self bonding silicone tape [PFRT-50P].
- When buried underground or encased in cement (slabs, foundations, etc.) the tubing must be routed within a non-metallic watertight conduit. This non-metallic conduit is to have an inside diameter 1/2 inch larger than the CSST's outer diameter. Exposed conduit ends must be sealed to prevent entry of water and debris.
- Local code authority will always take precedence. Therefore make sure you check with your local building authority or code authority having jurisdiction.

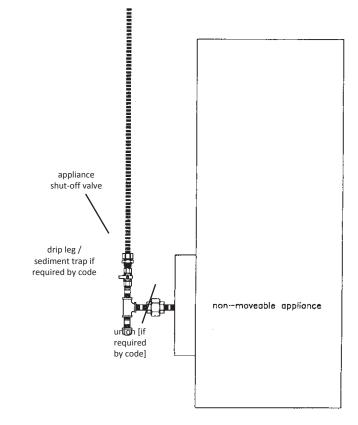
4.5 Meter Hookups


Gas meters are generally supported by the building structure or by framework brackets independent of the structure. Do not use **Pro-Flex**[®] or **Flak Jacket[™] CSST** as a direct connection to any meter which must be supported by the piping. On structure supported meters, accepted practice is to connect the meter outlet to a stub-out or termination plate mounted on the exterior wall or to penetrate the exterior wall with a steel pipe and provide a rigid attachment for the meter and CSST tubing within the building.

Building Supported Gas Meters

On independently supported meters, CSST can, in some locations, be routed through the exterior wall and connected directly to the meter. Direct connections must provide a loop or slack in the tubing to account for building settling and meter movement. Wall penetration must be properly sealed following local code guidelines. *NOTE:* Building codes vary from area to area. Check with your local utility and building codes to verify that meter connections are acceptable Always remember, local jurisdiction will prevail.

Note: Prior to installing flexible gas piping by Pro-Flex[®] directly to a meter, ensure that the local utility allows this practice as some utilities have regulations specifying meter attachments. Any exposed sections of stainless steel piping **must be** wrapped with a silicone self-bonding tape. This is especially important with masonry and wood frame construction.

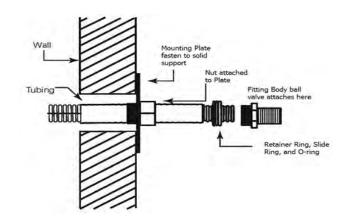

Independently Supported Gas Meter

4.6 Appliance Connections

Fixed Appliances:

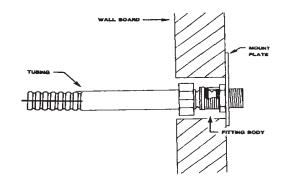
Pro-Flex® & Flak Jacket™ CSST may be connected directly to fixed [non-movable] appliances such as water heaters, furnaces, boilers, and island cook-tops without the installation of a termination outlet or flexible appliance connector, if local code allows. All local codes requiring drig legs and shut-off valves must be observed.

When appliances such as water heaters, furnaces, etc. have metallic vents which protrude through the roof physical contact between the CSST and the appliance cabinet are prohibited.

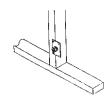


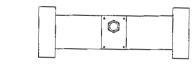
Moveable Appliances: Termination Outlets:

A **Pro-Flex**[®] termination outlet eliminates the need for concealed fittings by allowing CSST to be routed to the exterior of a wall or floor to provide a fixed connection point (stub-out). This fixed connection point allows for the attachment of flexible appliance connectors to moveable appliances such as dryers and ranges.


PFST or PFVT Series Termination Outlet:

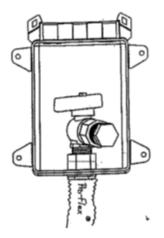
- Remove the fitting or valve body [leaving nut threaded to the plate . There will be 3-4 male threads protruding through back of plate.]
- Slide the tube through the back side of the nut/plate assembly.
- Place retainer ring in 4th valley; slide the slide ring to the retainer ring; roll the O-ring on to meet the slide ring; ensure the high temp gasket is in base of fitting/valve.
- Thread nut/plate onto fitting/valve until hand tight.
- Use a pair of wrenches to hold the nut and tighten fitting/valve additional 1/4 to 1/2 turn.
- Mount the plate assembly to wall or floor[See wall mounting options on next page].




PFTP Series Termination Outlet:

- Thread male fitting body completely into PFTP Series Termination Plate. [this is easily accomplished by using a vice to hold the termination plate.]
- Slide nut onto CSST tubing; place retainer ring in 4th valley; slide the slide ring to the retainer ring; roll the o-ring on to meet the slide ring; ensure high temp gasket is in base of the fitting.
- Thread nut onto fitting/plate until hand tight.
- Use a pair of wrenches to hold the nut and tighten fitting additional 1/4 to 1/2 turn.
- Mount the plate assembly to wall or floor[See wall mounting options below].

Wall Termination Outlet Mounting Options



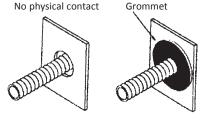
PFST, PFVT, & PFTP Series Termination Outlets may also be mounted to the floor.

PFOX Series Series Wall Box

- 1. Fasten Ox Box supply box directly to stud and/or on support bracket.
- 2. Disassemble Pro-Flex Fitting from nut.
- 3. Insert male threads on back of nut through hole in box and hand tighten lock nut.
- 4. Apply pipe thread sealant to male threads on valve. Thread into Pro-Flex Fitting and tighten.
- 5. Insert Pro-Flex Tubing through brass nut in bottom of box. Assemble Pro-Flex Fitting per Section 4.2 of Pro-Flex Installation / Training Guide.
- 6. When tightening the Pro-Flex nut to the fitting hold fitting with wrench and turn nut (it may be necessary to loosen lock nut) until hand tight then turn additional 1/4 to 1/2 turn with an additional wrench.
- 7. Tighten lock nut.
- 8. Check all connections for leaks using leak detector.
- 9. Turn off gas supply and connect appliance according to manufacturer's instructions using an approved appliance connector.

The PFOX Series Wall Box also includes an adapter for use with rigid pipe or other CSST brands. See detailed instructions included in packaging.

- **Pro-Flex**^{*} & **Flak Jacket**[™] CSST <u>SHALL NOT BE</u> routed directly into a metallic fireplace enclosure that utilizes a metallic vent that penetrates the structure's roof. The connection shall be made outside the firebox utilizing rigid pipe, a stub-out, or a termination fitting.
- Where it is necessary to install **Pro-Flex**^{*} or **Flak Jacket**[™] through masonry materials in fireplace construction, the plastic jacket shall remain intact and the tubing should be routed through sleeving that is appropriate for the application. Sleeving is not required through ceramic liners in decorative heat generating fireplaces.
- Where it is allowed to install Pro-Flex[®] or Flak Jacket[™] through sheet metal enclosures such as decorative non-vented or side wall vented gas fireplaces and vibration from fan motors could cause mechanical wear, the jacket should remain intact and the tubing should be routed or supported to prevent direct contact with the enclosure. If direct contact cannot be avoided, protections such as grommets, bushing or armor (Floppy-Flex[™]), self bonding tape, shrink sleeve material or a minimum of four (4) wraps of #10 Mil Duct-Tape should be used. This is to ensure no physical contact will be made between the metal and the CSST tubing that would cause mechanical wear. Note: Remove jacket only on the length of CSST that may be exposed to the flame within the firebox.

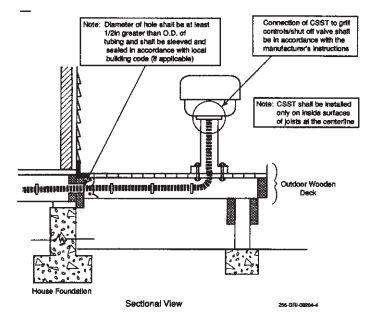

A

For Log Lighter installations in all-fuel fireplaces, the CSST **<u>SHALL BE</u>** terminated at the keyed valve or another point prior to entering the firebox.

NOTE: In some configurations, the corrugated tubing (CSST) feeding gas logs or gas fireplaces can cause a humming or whistle sound. This is due to the gas flow velocity and can usually be prevented by choosing a larger piping size in accordance with the chart below.

Suggested Maximum Capacity for Gas/Log Fireplace

TUBING SIZE	3/8" (10 mm)	1/2" (15mm)	3/4" (20mm)
FLOW [1,000 BTU's]	22	45	80


No Physical Contact

Outdoor Gas Appliance Installations

Deck Mounted Gas Appliances

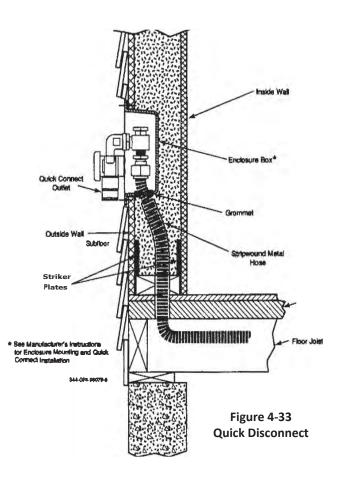
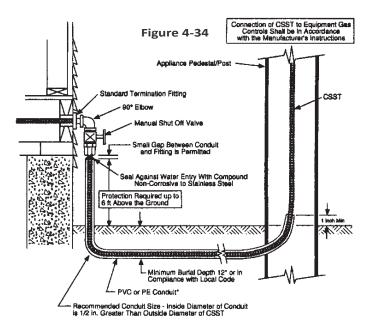
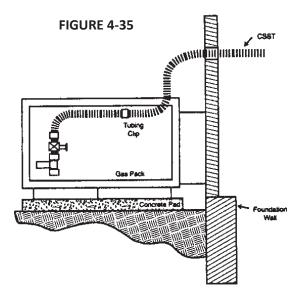

BBQ Grills and Gas Lights [as well as other outdoor appliances] that are permanently mounted to decks shall be connected to the flexible gas piping system [**Pro-Flex® or Flak JacketTMCSST**] as shown in **Figure 4-32** and in conjunction with this guide. The outdoor sections of the CSST shall be supported and protected against any of the inside deck joists. Any tubing that is not protected, must be protected in a conduit or chase.

FIGURE 4-32 Elevated deck a fixed Pedestal mount grill or gas light - direct connection


Moveable Outdoor Gas Appliances

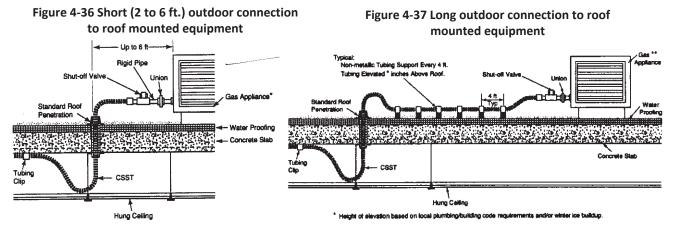
BBQ Grills, Deck Heaters and other moveable outdoor appliances shall be connected to an approved outdoor appliance connector transitioning to the CSST utilizing either a termination outlet, or a quick disconnect outlet such as Pro-Flex BBQ Kit [manufactured by MB Sturgis] - the quick connect shall be installed in accordance with the manufacturer's enclosed instructions. [**Figure 4-33**]


Post-Mounted Gas Appliances

Post-Mounted gas appliances such as gas lights or BBQ Grills may be connected to Pro-Flex's gas piping systems as shown in **Figure 4-34**. All underground sections are to be protected with water-tight, non-metallic conduit.

Pad Mounted Outdoor Gas Appliances

Pad mounted gas equipment such as Heat Pumps, Pad Heaters and Natural or LP Gas Generators, may be connected to a Pro-Flex Flexible Gas Piping system [**Pro-Flex® or Flak** Jacket[™] CSST] by means of a termination outlet that connects to an approved outdoor appliance connector or a rigid pipe. Direct connection is allowed when the CSST is properly protected and mounted if local code allows.



Roof Top Gas Appliances

Roof Mounted Equipment: FIGURE 4-36 - No special mechanical protection of the CSST is required for connections to roof top equipment. Whenever possible, roof penetrations shall be located within 6 ft of the equipment to be connected as shown in Figure (4-36). Long runs of tubing shall be supported with nonmetallic blocks every 4-ft. along its outdoor length, and raised above the roof a distance determined by local code/practice (4-37).

Lengths of CSST which run vertically up the side of the building shall be protected in accordance with the guidelines for outdoor installations.

• Height of elevation based on local plumbing/building code requirements and/or winter ice buildup.

• When the equipment manufacturer requires the use of a flexible connector, the CSST shall be installed in a fashion similar to that shown in Figure 4-35

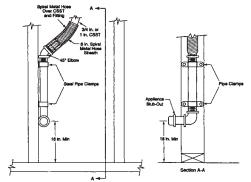
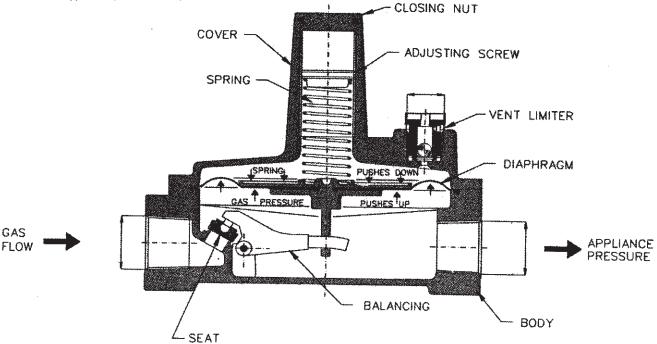



Figure 4-38 Appliance termination/stub-out

4.7 Manifold Stations


Manifolds are installed where multiple runs are made from a common location in a parallel arrangement. The manifold may be manufactured from a one piece, malleable iron or brass casting; a welded fabrication of steel subcomponents; an assembly of approved, malleable iron tees and short nipples. Depending on the location and available space, different mounting arrangements are permitted. A manifold may be mounted on the surface of an interior wall, between open floor joists, in attic spaces, crawlspaces, within a partition wall, or inside an enclosure. The installation of manifold assemblies using a pounds-to-inches regulator must be in accordance with all local codes, and the following guidelines:

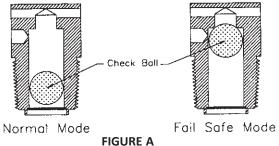
4.8 Pressure Regulators

Description

- a) A gas piping system utilizing gas pressures exceeding 1/2 psi (3.45kPa), but intended to serve equipment rated for 1/2" psi (3.45 kPa) maximum, shall include a gas pressure regulator to limit the downstream supply pressure to 1/2" psi (3.45 kPa), and the installation instructions for the piping system shall specify that such a regulator shall be installed. For system pressures up to 5 psi (34.5 kPa), the regulator shall incorporate construction which will "lock up" under no-flow conditions to prevent excessive downstream pressure build-up. Pressure Drop from Bends and shall comply with the applicable provisions of the Standard for Line Pressure Regulators, ANSI Z21.80 CSA 6.22. For system pressures above 5 psi (34.5 kPa), the regulator shall comply with a recognized national standard for pressure regulators.
- **b)** The Maxitrol 325-L Series regulators, supplied by **Pro-Flex**[®] are 2 psi line pressure regulators they are used to drop the pressure from 2 psi to inches of water column. Contact Pro-Flex, LLC for additional regulator options manufactured by Maxitrol. They can also be used as a line regulator on equipment already fitted with an appliance regulator.
- c) The materials of all component parts are carefully selected and corrosion resistant. The housings are made of durable die cast aluminum, the diaphragm and self-aligning valve seat are made of nitrile rubber which is selected to work at ambient temperatures of -40 to 205 degrees F (-40 to 96 degrees C). All regulators are supplied with vent limiting devices that are made of brass and threaded with a type "0" (NPT Thread).

Sizing Instructions

a) Line Pressure Regulator Selection


The Maxitrol 325-L Series Regulator is used in a 2 PSI gas piping installation to reduce supply pressure to the appliance within required operating ranges (typically 4" - 7" WC. natural gas or 10" - 11" LP gas).

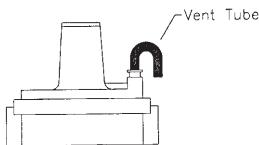
To select the correct regulator for pressure regulation, the following information must be established;

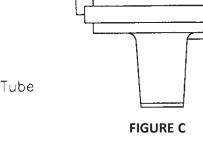
- Available inlet pressure range at the regulator inlet
- Desired outlet pressure
- Required maximum flow rate
- Refer to tables (below) to select the correct regulator to satisfy system requirements.

Installation

- a) The regulator shall be installed in an accessible location with an approved shut-off valve on the inlet side and a union on the outlet side so that it may be inspected, maintained and serviced if repair or replacement is required.
- b) The regulator is suitable for multi-poise mounting. When using a vent-limiting device however, the regulator must be mounted in a horizontal upright position. All regulators provided by **Pro-Flex**[®] include a vent limiting device.
- c) The vent limiter is a fail-safe device that permits free air movement above the diaphragm during normal operation. In the unlikely event of a diaphragm rupture, the vent limiting device will limit gas escapement to 1.0 CFH natural gas at 2 PSI and 0.65 CFH LP at 2 PSI. Both values are below the ANSI standard of 2.5 CFH.

Upside Down


Vent Limiter Removed


Note: The vent-limiting device does not allow gas to escape to the environment during normal mode operation.

- d) Do not leak test the vent limiter with liquid leak test solution. This action will contaminate the internal ball check mechanism or plug the breathing hole resulting in erratic regulator performance
- e) Using a vent limiter, the maximum inlet pressure is 2 PSI.
- f) When using a vent line, the line must be at least the same size as the regulator vent connection, and cannot exceed a length of 30 ft. The vent shall be designed to prevent entry of water, insects or other foreign materials that could cause blockage of the line.. Do not vent to appliance flue, pilot light or building exhaust system.
- g) Maxitrol regulators have a lower temperature limit of -40 degrees F. The lower temperature limit and rust proof construction design enables the regulator to be used for outdoor installations. To minimize the potential for moisture condensation and freezing problems in or around the vent port, the vent limiting device must be removed for outdoor installations and mounted upside down .

Outdoor Mounting Options:

The regulator may be mounted upside down with the open vent port facing down. Consideration must be taken to ensure there is adequate clearance for snow buildup.

The regulator may be mounted horizontally, with a vent tube installed in the venting port. The end of the tube must be facing downward, and should be designed to prevent water and foreign material from causing a blockage.

FIGURE B

Line Regulator Capacity Tables Natural Gas

	Maxi	trol Pressure Drop T	able	
Capacity @ Pres	ssure Drop - 0.64 sp gr	gas expressed in CF	⁻ H (m³/h)	
Model Number	7.0" W.C. (17 mbar)	1/2 psi (34 mbar)	3/4 psi (52 mbar)	1 psi (69 mbar)
325-3L	145 (4.0)	204 (5.8)	250 (7.0)	289 (8.2)
325-5-L	338 (9.6)	476 (13.5)	583 (16.5)	673 (19.1)
Capacity value for r PSI drop across reg	nost typical 2 PSI parallel : gulator	systems when trunk run	is sized for 1 PSI pressu	re drop and a 3/4

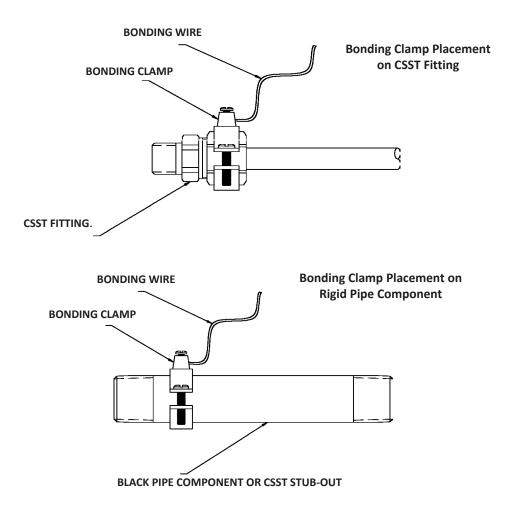
Propane

	Maxi	trol Pressure Drop T	able	
Capacity @ Pres	ssure Drop - 1.52 sp gr	gas expressed in ME	BTUH LP	
Model Number	7.0" W.C. (17 mbar)	1/2 psi (34 mbar)	3/4 psi (52 mbar)	1 psi (69 mbar)
325-3L	234 (6.4)	328 (9.3)	403 (11.3)	465 (13.2)
325-5L	544 (15.5)	766 (21.7)	939 (26.6)	1084 (30.8)
Capacity value for r PSI drop across reg	nost typical 2 PSI parallel : gulator	systems when trunk run	is sized for 1 PSI pressu	re drop and a 1/2

Performance

- a) A performance test should be conducted while operating all appliances at full load. This will test if adequate pressure is reaching each appliance under full-load conditions. To accomplish this, measure the line pressure at the appliance connection while operating the appliance.
- b) The inlet pressure for a typical gas appliances under full load conditions should measure a minimum of 4 inches of water column pressure for natural gas and a minimum 10 inches water column pressure for propane. If these pressure ranges cannot be obtained, a slight adjustment to the service regulator or the pounds-to-inches regulator may be necessary to increase line pressure.

Adjustment


- Adjustment can be accomplished by first removing the regulator seal cap to expose the adjusting screw.
 Turning the screw clockwise will increase outlet pressure, turning it counter-clockwise will decrease pressure.
- b) If spring adjustment will not produce the desired outlet pressure, check to make sure the main supply pressure is adequate. If the main supply pressure is adequate, consult factory for other line-regulator options. Do not continue to turn regulator adjusting screw clockwise if the outlet pressure readings do not continue to increase. This may result in over-firing due to loss of pressure control, should there be a subsequent increase in inlet pressure.
- c) The 2 PSI system pounds-to-inches regulator can be adjusted with an outlet pressure ranging between 7 to 9 inches water column pressure for natural gas and 10 to 12 inches water column for propane. The regulator must be adjusted according to the manufacturers recommended procedure. A pressure gauge mounted just downstream of the regulator can monitor the set pressure under various loads.
- d) The regulator outlet is pre-set and labeled at the factory for either 8" natural gas or 11" propane.
- e) The average natural gas appliance is designed to operate at 3 to 4 inches water column pressure, and a pressure difference of 1 to 2 inches of water column across the appliance regulator which will prevent slow regulator response. Thus, the appliance regulator will operate best at 4 to 6 inches W.C. inlet pressure. The pounds-to-inches system regulators for natural gas are set to deliver 8 inches of W.C. outlet pressure under load to allow for 3 inches of W.C. pressure drop in the tubing.
- f) The average propane gas appliance is designed to operate at 10 to 10-1/2 inches water column pressure. Thus, the pounds-to-inches regulators for propane gas are set to deliver 11 inches water column outlet pressure under load to allow for 0.5 inches water column pressure drop in the tubing.
- g) Contact Pro-Flex, LLC for availability of additional regulator sizes and configurations [including 5 psi w/ OPD].

4.10 Electrical Bonding

- Per the 2009 or later versions of national model codes [NFPA-54 (National Fuel Gas Code), the Uniform Plumbing Code (UPC), and the International Fuel Gas Code (IFGC)], any gas piping system containing at least one segment of non-conductive (Yellow) coated CSST must be bonded to the buildings electrical grounding electrode system.
- Pro-Flex[®] <u>strongly recommends</u> the equipotential bonding of all metallic mechanical systems to the structure's grounding electrode. Bonding serves to protect people and equipment in the event of an electrical event.
- All CSST manufactured by Pro-Flex, LLC shall be bonded in accordance with the national model codes and these instructions. If there is an inconsistency between these instructions and local codes, **the local codes shall control**
- There are no additional bonding requirements for Flak Jacket [™] CSST set forth in the manufacturer's written instructions. Flak Jacket [™] CSST is to be bonded in accordance with the National Electric Code NFPA 70 section 250.104(B) in the same approach as the minimum requirements for rigid metal piping. <u>However, installers must follow any local code requirements that are more stringent than the manufacturer's written instructions.</u>
- Flak Jacket[™] CSST shall not be painted, otherwise coated or have labels applied.
- <u>Neither</u> **Flak Jacket[™]** <u>nor</u> **Pro-Flex® CSST** flexible gas piping are to be used as a grounding conductor or electrode for an electrical system.

When Direct Bonding is Required by Local Code or Manufacturer's Requirement:

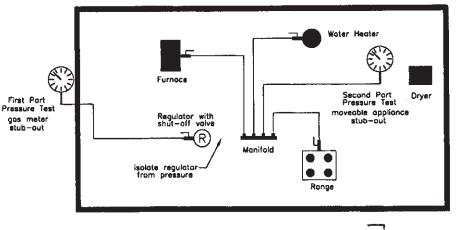
- a) Yellow jacketed Pro-Flex[®] CSST must be bonded in accordance with this section.
- **b)** The bonding must be performed by a qualified person recognized by the local jurisdiction [AHJ] as capable of performing such work.
- **c)** A single bonding clamp that is listed to UL 467 is to be attached to <u>EITHER</u> a CSST Fitting <u>OR</u> a rigid pipe or rigid component at <u>any point</u> in the gas piping system downstream of the gas meter or second stage regulator in an accessible location.
- **d)** The bonding conductor [wire] is to be solid or stranded 6 AWG copper [minimum] or equivalent an not to exceed 75 feet in length. The effectiveness of the bond will be improved utilizing the shortest practical conductor [wire] length.
- e) The bonding conductor [wire] is to be directly and permanently connected to the electrical service grounding system. This can be achieved through a connection to the ground buss in the electrical service enclosure, the grounding electrode conductor, or the grounding electrode used. All grounding electrodes used shall be bonded to the electrical service grounding electrode, or if available, the lightning protection grounding system.
- **f)** The bonding shall be done in accordance with NFPA-70 [the National Electric Code] or CSA-C22.1 [the Canadian Electric Code].
- **g)** CSST shall not be directly supported on or by other electrically conductive systems including metallic water pipe, electric power or communications cables, HVAC ducts or plenum, and structural steel beams or framing.
- **h)** A daisy chain configuration may be used to bond multiple gas services [meters] that are located within a single structure.

Depending upon conditions specific to the location of the structure in which the flexible gas piping system is being installed, including but not limited to whether the area is prone to lightning activity, the owner of the structure should consider whether a lightning protection system is necessary or appropriate. Lightning protections are beyond the scope of this guide, see NFPA 780, the Standard for the Installation of Lightning Protection Systems, and other standards.

Failure to properly bond **Pro-Flex**[®] flexible gas piping systems in accordance with NFPA 70 [NEC] may lead to damage to the CSST system in the event of a lightning strike.

Proper bonding will help reduce the possibility and/or severity of arcing between conductive systems when energized by a nearby lightning strike.

5.0 Inspection and Testing of Installed CSST


Pressure Testing and Inspection Procedure

a) The final installation must be inspected and tested for leaks in accordance with the local / state codes. In the absence of local restrictions test in accordance with the procedures specified in Part 4 of the National Fuel Gas Code, ANSI Z223.1 / NFPA 54, and/or the Natural Gas and Propane Installation Code, CSA B149.1 & B149.2, or the International Fuel Gas Code, or in accordance with the requirements of the applicable local codes. The installed gas piping system shall not exhibit any loss of pressure during the field pressure test. When local codes are more stringent, local codes must be followed.
 Note: Remove or isolate the pound-to-inches pressure regulator for system pressure test. Subjecting the regulator

Note: Remove or isolate the pound-to-inches pressure regulator for system pressure test. Subjecting the regulator to pressures greater than 10 PSI could damage the regulator and will not expose the downstream tubing to the correct test pressure.

- b) Pressure testing must be performed during rough construction of the facility (before interior walls are finished). This will permit a more complete inspection of the piping system during the pres-sure testing.
- c) Do not connect appliances or pressurize with fuel gas until after the pressure test has been performed.
- d) All gas outlets for appliance connections should be capped during pressure testing.
- e) A 2 PSI system usually requires a pressure test of 10 PSI or greater, depending on local code. In this case, the regulator must be removed or isolated prior to pressure testing. The test may be performed as a one-part test replacing the regulator with suitable "jumper" pipe length for pressure testing the entire system. Or a two-part test may be performed as shown in figure below.
 - The first test is performed on the elevated pressure section, between the meter connection and the pounds-to-inches house line regulator.
 - The second test is performed on the low-pressure section, between the outlet of the pounds-to-inches house line regulator and the gas appliance outlets.
 - For a "two-part" test, it is important to remember to close both gas "shut-off" valves to avoid damage to the regulator.
- f) Electrical bonding must be in place as described on pages 37-38 "Electrical Bonding."

g) Most jurisdictions also require an additional pressure or leakage test performed after the construction is completed and finished interior walls are in place. The leakage test procedure is generally performed by the gas utility at the time of setting their meter. This test is performed to assure no damage was done to the tubing during the closing-in construction process, and is typically required before gas service is initiated.

Appliance Connection Leakage Check Procedure

After the final pressure test, inspection and final construction is complete (finished interior walls) connect the appliances to the tubing system. This connection is made using approved stainless steel flexible connectors for movable appliances such as a dryer or range, or with CSST tubing, or rigid black pipe for fixed appliances. Turn the gas on at the meter and inspect for leakage before operating the appliances.

- a) Connections made at the appliances should be leak checked with a chloride-free bubble solution.
- b) Before placing the appliances in operation, the tubing system should be purged. This displaces the air in the system with fuel gas. Be sure to vent into a well-ventilated area.

NOTE: Leak test solutions may cause corrosion to some types of material in the gas tubing system, be sure to water rinse after the test and thor-oughly dry all contacted material. Also, the vent limiter should not be leak tested with a liquid test solution. This will contaminate the internal ball check mechanism or plug the breathing hole, resulting in erratic regulator operation.

REPAIRING DAMAGED CSST TUBING & FITTINGS

Repair Classifications:

FITTINGS: Leaking fittings should be repaired in accordance with the manufacturers installation instructions. In some cases, the entire fitting or parts of the fitting must be replaced totally.

CSST TUBING: If the tubing is damaged, the severity of damage and if necessary, the method of repair shall be determined as follows:

- **a.** Tubing shall be repaired if damaged due to a puncture of any kind from nails, screws or drill bits.
- **b.** Tubing shall be repaired if significantly damaged due to impact or crushing as indicated in Figure 4-44.
- c. Tubing shall be repaired if bent beyond its minimum bend radius and there is a crease or kink in the tubing.
 (See Figure 4-45)
- **d.** No repairs or replacements of tubing is necessary if the tubing is only slightly dented due to minor impact or crushing. (See Figure 4-46)

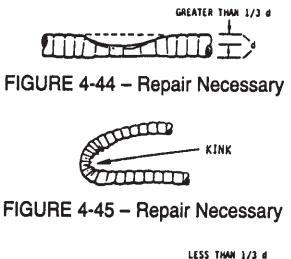
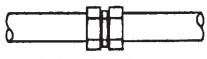


FIGURE 4-46 -- Repair Unnecessary No significant damage to the tubing due to minor impact or crushing

METHODS OF REPAIR


There are different methods of repair which are discussed below depending on the nature and severity of the damage.

The Installer must determine the most reliable and economical method of repair using one of the following methods.

Replace the entire tubing run. When the tubing run is short and easily accessible, it can be repaired faster and more economically by replacing the whole run versus repairing only the damaged section. Replacement in this instance is the preferred method because extra fittings are not required.

Repairing damaged section. Damaged tubing shall be repaired by methods listed below.

a. Remove the section of tubing which is damaged and connect the new ends with a union fitting as shown in Figure 4-47 Use this repair method if the damage section is small and there is enough slack tubing in the run to makeup the damaged length.

Typical Tubing Splice with Union Fitting

FIGURE 4-47

Repair of Damaged Jacket - Flak Jacket[™]

A repair is required if the Flak Jacket[™] jacket material has been torn, cut, ripped, or exposed to an electrical arc. The jacket shall be wrapped around its circumference using self-bonding silicone tape [such as Pro-Flex part PFRT-50P], covering the entire damaged area. *No exposed stainless steel is permitted [this includes at the junctions of fittings and tubing].*

	5 0 Sizing Tahles
I onate proper sizing table based on total pressure drop allowed in pining si	NATURAL GAS LOW PRESSURE

0

Luciate proper sizing table based on total pressure drop allowed in piping system by local utility for each installation

CAPACITY TABLES OF CSST -TABLE

Maximum Capacity of Pro-Flex® CSST in Cubic Feet per Hour of Gas Gas Pressure: 6 – 7 inches WC (1/4 psig) Pressure Drop: 0.5 inch WC (Based on a 0.6 Specific Gravity Gas)

Tube Size (EHD) 3/8" 15 1/2" 18	95 64 5	68 45 10	15 37 56	49 20	29 25	40 26 30	35 23 40	40 50 60 23 20 18 35 32 29	. 18 60 . 29	70 17 27	16 80 25	90 15 24	100 14 23	150 12 19	200 10	250 9 14	13 8 300
	95	68	56	49	44	40	35	32	29	27	25	24	23	19	16	1.	14
3/4" 25	283	200	163	141	126	115	100	89	81	75	70	66	63	51	44		40
1" 31	626	424	337	287	253	228	194	171	154	141	131	123	116	92	78	69	9
<u>11/4"</u> 37	950	671	547	474	423	386	334	299	273	252	236	222	211	172	149	133	ω

tubing according to the following formula: L = 1.3 (n) L = is the additiona *Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of

L = is the additional length (ft.) of tubing to be added to actual run. n = is the number of additional fittings and/or bends

CAPACITY TABLES OF CSST – TABLE 2

Maximum Capacity of Pro-Flex® CSST in Cubic Feet per Hour of Gas Gas Pressure: 6 – 7 inches WC (1/4 psig) Pressure Drop: 1.0 inch WC (Based on a 0.6 Specific Gravity Gas)

11/4"	1"	3/4"	1/2"	3/8"	Tube Size	
37	31	25	18	15	(EHD)	
1346	925	400	132	06	თ	
950	626	283	95	64	10	
775	498	231	78	52	15	
671	424	200	89	45	20	
600	373	179	61	41	25	
547	337	163	56	37	30	
474	287	141	49	32	40	Tubing
423	253	126	44	29	50	Tubing Length (feet)
386	228	115	40	26	60	(feet)
357	209	107	37	24	70	
334	194	100	35	23	80	
315	181	94	33	21	06	
299	171	68	32	20	100	
244	136	73	26	16	150	
211	116	63	23	14	200	
188	102	56	20	13	250	
172	92	51	19	12	300	

tubing according to the following formula: *Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of

L = 1.3 (n) L = is the additional length (ft.) of tubing to be added to actual run.

n = is the number of additional fittings and/or bends

Locate proper sizing table based on total pressure drop allowed in piping system by local utility for each installation. CAPACITY TABLES OF CSST – TABLE 3 Maximum Capacity of Pro-Flex® CSST in Cubic Feet per Hour of Gas Gas Pressure: 8 – 10 inches WC Pressure Dro Tubing Length (feet)	Tube Size (EHD) 5 10	<u>3/8"</u> 15 156 110	1/2 " 18 222 160	<u>3/4"</u> 25 692 490	31 1717 1162	1 ¹ / ₄ " 37 2337 1650
on total press CSST – T/ SST in Cubic F	15	90	132	400	925	1346
TABLE 3 Feet per Ho	20	78	115	346	787	1165
allowed	25	70	103	310	694	1041
in piping	30	64	95	283	626	950
Gas Pressure: Tubing	40	55	83	245	532	822
ystem by local utility f essure: 8 – 10 inche: Fubing Length (feet)	50	50	74	219	469	735
8 – 10 inches WC ength (feet)	60	45	68	200	424	671
c Pres	70	42	63	185	388	621
sure Dro	80	39	59	173	360	581
Pressure Drop: 3 inch WC	90	37	56	163	337	547
	100	35	53	155	318	519
(Based on a 0.6 Specific Gravity Gas)	150	29	44	126	253	423
0.6 Spec	200	25	38	109	215	366
ific Gravi	250	22	34	86	189	327
ty Gas)	300	20	32	89	171	299

L = 1.3 (n)

L = is the additional length (ft.) of tubing to be added to actual run.

NATURAL GAS Locate proper sizing table based on total pressure drop allowed in piping system by local utility for each installation.

Caution: Capacities show in Table 6 may exceed maximum capacity of the regulator. With a 1 psig regulator inlet pressure and a 20 inch WC drop across the regulator (8" tubing according to the following formula: *Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of tubing according to the following formula: mitted by local code WC regulator outlet setting), the maximum flow capacity of a single 325-3 is 252 CFH, while the 325-5A is 587. The use of multiple parallel regulators may be required if per-*Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of 11/4" 3/4" 1/2" 3/8" 11/4" 3/4" 1/2" 3/8" " Tube Size Maximum Capacity of Pro-Flex® CSST in Cubic Feet per Hour of Gas **CAPACITY TABLES OF CSST - TABLE** ; Maximum Capacity of Pro-Flex® CSST in Cubic Feet per Hour of Gas **CAPACITY TABLES OF CSST – TABLE 5** Tube Size Locate proper sizing table based on total pressure drop allowed in piping system by local utility for each installation. L = 1.3 (n) L = 1.3 (n)(EHD) (EHD) <u>ω</u> <u>5</u> ß L = is the additional length (ft.) of tubing to be added to actual run. L = is the additional length (ft.) of tubing to be added to actual run. сл ရ Gas Pressure: 2 psig ЗО Gas Pressure: 13 – 14 inches WC Tubing Length (feet) **Tubing Length (feet)** Pressure Drop: 1 psig <u></u> n = is the number of additional fittings and/or bends n = is the number of additional fittings and/or bends Pressure Drop: 6 inch WC អ្ (Based on a 0.6 Specific Gravity Gas) 33 (Based on a 0.6 Specific Gravity Gas) С С

NATURAL GAS

NATURAL GAS

Locate proper sizing table based on total pressure drop allowed in piping system by local utility for each installation

CAPACITY TABLES OF CSST – TABLE 7

Maximum Capacity of Pro-Flex® CSST in Cubic Feet per Hour of Gas Gas Pressure: 5 psig Pressure Drop: 3.5 psig (Based on a 0.6 Specific Gravity Gas)

tubing according to the following formula: *Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of

L = 1.3 (n) L = is the additional length (ft.) of tubing to be added to actual run. n = is the number of additional fittings and/or bends

THIS TABLE. Consult with Pro-Flex, LLC for guidance. Note: Table 7 does include the effects of pressure drop across the line regulator. If regulator pressure drop exceeds 1 psig across 325-3 or 325-5A regulators, DO NOT USE

Caution: Capacities shown in Table 7 may exceed maximum capacity of the regulator. With a 1.5 psig regulator inlet pressure and a 1 psig pressure drop across the regulator, the maximum flow capacity of a single 325-3 is 298 CFH while the 325-5A is 695 CFH. The use of multiple parallel regulators may be required if permitted by local code

Propane	le	PROP Locate p	ANE L	Ing table	PROPANE LOW PRESSURE GAS Locate proper sizing table based on total pressure drop allowed in piping system by	IRE G.	AS essure d	rop allow	'ed in pip	ing syste		local utility for each installation.	or each ii	nstallatio	<u>л</u>			
CAPACITY TABLES	TY TAE	BLES (OF CSST		TABLE	8 Maxi	mum Cap	bacity of	Pro-Flex®	CSST in	Thousar	lds of BT	U per Ho	ur of Unc	filuted Li	quified P	Maximum Capacity of Pro-Flex [®] CSST in Thousands of BTU per Hour of Undiluted Liquified Petroleum Gas	Gas
Gas Pressure:		11 inch WC	Press	ure Drop	Pressure Drop: 0.5 inch WC	WC (Based or	1 a 1.52 S	(Based on a 1.52 Specific Gravity Gas)	iravity G	as)							
								Tubing	Tubing Length (feet)	(feet)								
Tube Size	(EHD)	თ	10	15	20	25	30	40	50	60	70	80	90	100	150	200	250	300
3/8"	15	101	72	59	51	46	42	36	32	29	27	25	24	23	19	16	14	13
1/2"	18	150	108	89	78	70	64	56	50	46	43	40	38	36	30	26	23	21
3/4"	25	447	316	258	223	200	182	158	141	129	119	111	105	100	81	70	63	57
1"	31	066	670	533	453	400	381	307	270	244	224	207	194	183	145	124	109	86
11/4"	37	1501	1060	865	748	669	610	528	472	431	399	373	351	333	272	235	210	192
Gas Pressure:		13 – 14 inches WC	hes WC	(1/2 psig)		Pressure Drop: 2.5 WC	Drop: 2.		(Based on a 1.52 Spec	n a 1.52	Specific	ific Gravity Gas)	Gas)					
								Tubing	Tubing Length (feet)	(feet)								
Tube Size	(EHD)	თ	10	15	20	25	30	40	50	60	70	80	90	100	150	200	250	300
3/8"	15	225	160	131	113	101	93	80	72	66	61	57	54	51	42	36	32	29
1/2"	18	322	232	191	167	150	138	120	108	66	92	86	82	78	64	56	50	46
3/4"	25	1000	707	577	500	447	408	353	316	288	267	250	235	223	182	158	141	129
1"	31	2449	1658	1320	1122	066	893	760	670	604	554	514	481	453	361	307	270	244
11/4"	37	3368	2378	1940	1679	1501	1370	1186	1060	967	895	837	789	748	610	528	472	431
*Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of	s losses	for four :	90 degre	e bends	and two	(2) end fi	ttings. Tu	bing runs	s with larg	jer numb		nds and/	or fitting	shall be i	increased	d by an e	bends and/or fitting shall be increased by an equivalent length of	length
L = 1.3 (n) $L = is the addition$	ng to the	L = is th	e additio	a: nal lengti	= is the additional length (ft.) of tubing to be added to actual run.	ubing to	be added	d to actua	al run.	n =	is the nur	nber of a	dditional	fittings a	number of additional fittings and/or bends	nds.		

Caution: Capacities show in Table 11 may exceed maximum capacity of the regulator. With a 1.5 psig regulator inlet pressure and a 1 psig pressure drop across the regulator (14 inch WC regula-tor outlet setting), the maximum flow capacity of a single 325-3 is 467,000 BTU/hr., while the 325-5A is 1,088,000 BTU/hr. The use of multiple parallel regulators may be required if permitted by local code following formula: *Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of tubing according to the Caution: Capacities show in Table 10 may exceed maximum capacity of the regulator. With a 1 psig regulator inlet pressure and a 15 inch WC drop across the regulator (13 inch WC regulator out-let setting), the maximum flow capacity of a single 325-3 is 342,000 BTU/hr., while the 325 5A is 796,000 BTU/hr. The use of multiple parallel regulators may be required if permitted by local code. DO NOT USE THIS TABLE. Consult with Pro-Flex, LLC. for guidance Note: Table 10 does not include the effects of pressure drop across the line regulator. If regulator pressure drop exceeds 17 inch WC across 325-3 or 325-5A regulators *Table includes losses for four 90 degree bends and two (2) end fittings. Tubing runs with larger numbers of bends and/or fitting shall be increased by an equivalent length of tubing according to the following formula: 11/4" 3/4" 1/2" 3/8" Gas Pressure: 5 psig **CAPACITY TABLES OF CSST** – 11/4" 3/4" 3/8" Gas Pressure: 2 psig ; 1/2" CAPACITY TABLES OF CSST - TABLE 10 ; Tube Size Tube Size Locate proper sizing table based on total pressure drop allowed in piping system by local utility for each installation L = 1.3 (n)1.3 (n) (EHD) (EHD) <u>ω</u> <u>5</u> L = is the additional length (ft.) of tubing to be added to actual run L = is the additional length (ft.) of tubing to be added to actual run. Pressure Drop: 1 psig Pressure Drop: 3.5 psig TABLE (Based on a 1.52 Specific Gravity Gas) (Based on a 1.52 Specific Gravity Gas) Maximum Capacity of Pro-Flex® CSST in Thousands of BTU per Hour of Undiluted Liquified Petroleum Gas Maximum Capacity of Pro-Flex® CSST in Thousands of BTU per Hour of Undiluted Liquified Petroleum Gas Tubing Length (feet) Tubing Length (feet) n = is the number of additional fittings and/or bends n = is the number of additional fittings and/or bends

PROPANE LOW PRESSURE GAS

Note: Table 11 does not include the effects of pressure drop across the line regulator. If regulator pressure drop exceeds 1 psig across 325-3 or 325-5A regulators, DO NOT USE THIS TABLE. Consult with Pro-Flex, LLC for guidance

Pipe Size (in.) Nominal Iron IRON PIPE CAPACITY TABLES **1**¹/2" 1/4" 3/4" 1/2" 3/8, 1/4" Ŋ --Diameter (in.) Internal 0.824 0.493 0.364 2.067 1.610 1.380 1.049 0.622 \$ 2 Maximum Capacity of Steel IPS Pipe in Cubic Feet Per Hour with a Gas Pressure of 0.5 psi or less and a Pressure Drop of 0.5 in. WC Tubing Length (feet) ယ္ထ 5 (based on a 0.60 Specific Gravity Gas) <u>ω</u> ဖ ω

SIZING TABLES AND PRESSURE DROP CHARTS

*Table reproduced from National Fuel Gas Code NFPA-54

1.026

23000 15800

 မ္န္ ယ္ဒ

2.469 3.068

21/2"

Reference Data

SPECIFIC GRAVITY FACTOR FOR NATURAL GAS

F	Pressure Conversio	n Factors	Fuel Ga	as Information	
1/4 psi =	6.921 in. w.c. =	(approx. 7" w.c.)		Natural Gas	Propane
1/2 psi =	13.842 in. w.c. =	(approx. 14" w.c.)	BTU per Cubin Foot =	1000	2516
1 psi =	27.684 in w.c. =	(approx. 28" w.c.)	Specific Gravity =	0.60	1.52
2 psi =	55.368 in. w.c. =	(approx. 56" w.c.)	Note: to determine the CFH fo	or Natural Gas, divide the	BTILload by 1000
5 psi =	138.42 in. w.c. =	(approx. 140"w.c.)	To determine the CFH for Pro		,

Gas piping systems that are to be supplied with a gas of a specific gravity other than 0.60 for natural gas or 1.52 for propane shall apply a specific gravity factor. This conversion is accomplished by multiplying the flow capacities given in Tables 1 through 15 and on the pressure drop graph by the appropriate multiplier shown in the tables shown below. If the exact specified gravity is not shown in the table, use the next higher specified gravity shown.

Specific Gravity	Multiplier	Specific Gravity	Multiplier
0.35	1.31	1.00	0.78
0.40	1.23	1.10	0.74
0.45	1.16	1.20	0.71
0.50	1.10	1.30	0.68
0.55	1.04	1.40	0.66
0.60	1.00	1.50	0.63
0.65	0.96	1.60	0.61
0.70	0.93	1.70	0.59
0.75	0.90	1.80	0.58
0.80	0.87	1.90	0.56
0.85	0.84	2.00	0.55
0.90	0.82	2.10	0.54

7.0 Technical Data Sheet

Pro-Flex[®] & Flak Jacket[™] C.S.S.T. SPEC / DATA SHEET

All system components are CSA approved

TUBING

Tubing:	ASTM A240/A240M-95A Type 304 Stainless Steel
Jacket Material:	Pro-Flex [®] CSST - Yellow insulative polyethylene jacket Flak Jacket [™] - Black Arc Resistant polyethyene jacket
Pro-Flex [®] Fittings	
Male Fittings:	C360 Brass
Female Fittings:	C360 Brass
Union Fittings:	C360 Brass
Termination Plates:	1018 Low Carbon Steel
Retainer Rings:	ASTM A240/A240M-95A 304 Stainless Steel
Slide Rings:	ASTM A240/A240M-95A 304 Stainless Steel
Silicone O-Rings:	Silicone Rubber, proprietary material
Hi-Temp Gaskets:	The gasket is made from a non-asbestos, proprietary
	material. The gasket is compressed during the assembly
	processes and should be inspected and replaced, if
	necessary, when reusing the fitting.
Pro	-Flex [®] Accsesories
Striker Plates:	Manufactured of 16 ga hardened steel
Manifolds:	Epoxy coated Standard 150 lb. Malleable Iron manufactured orThreaded Fittings Single tee and multiple tee manifold assemblies.
Valves:	Ball valves which meet the ANS/ASM B 16.33 or CGA 9.1-M88 as approved shutoff valves for use with CSST
Regulator:	tubing.
Metal Conduit:	Maxitrol 325-3L Series or equivalent. Galvanized steel strip-wound metal conduit used as a protection device.

8.0 CSST Installation Checklist

Description

Corrugated Stainless Steel Tubing (CSST) has been design certified by CSA (formerly know as AGA, The American Gas Association Laboratory since 1990) for use as a fuel gas piping system. CSST has been tested per ANSI LC1 - CSA 6.26 as required for approval and is listed as an approved gas piping material in the National Fuel Gas Code [NFPA 54], the International Code Series [ICC], and is a listed product with IAPMO and pursuant to section 302.1 Alternate Materials and Methods of the Uniform Plumbing Code.

Approval: Conditions and Requirements

A flexible gas piping system using CSST must be installed *in accordance with all local building codes and the manufacturer's instructions*. The following check list is designed to assist the local administrative authority to perform an inspection of a fuel piping system using corrugated stainless steel tubing.

- 1. Flexible Gas Piping may only be installed by a Qualified Installer who has successfully completed the manufacturers Training Program. A manufacturer's qualification/training card is required to purchase and install Flexible Gas Piping.
- 2. Only the components provided or specified by the manufacturer (including strike protection) as part of the piping system are to be used in the installation.
- 3. CSST routed in a location which is concealed, constrained and within 3 inches of a potential threat will be protected against damage by protection devices listed in the manufacturers Installation/ Training Guide.
- 4. Sizing of the Flexible Gas Piping System must be performed using capacity tables found in the manufacturer's Installation/Training Guide or other code approved CSST capacity tables.
- 5. CSST shall not be connected to moveable appliances. Connection to moveable appliances such as ranges and clothes dryers shall be accomplished with an approved flexible appliance connector.
- 6. The Flexible Gas Piping System must be pressure tested for leaks during rough construction in accordance with all local codes. In the absence of local requirements, test in accordance with NFPA 54, National Fuel Gas Code which is 1 1/2 times the maximum working pressure but not less than 3 PSI. To subject the entire CSST system to pressure test, the pressure regulators should be isolated or removed.
- 7. Regulators are suitable for multi-poise mounting. When using a vent limiting device however, the regulator must be mounted in a horizontal upright position.
- 8. A manifold assembly utilizing a pounds-to-inches regulator shall include a ball-valve ahead of the regulator and installed in an accessible location so that the regulator can be inspected, maintained and serviced if repair or replacement is required.
- 9. When installed outdoors, the external jacket shall remain intact as much as possible. Exposed portions of the stainless steel tubing shall be wrapped with self bonding silicone tape to provide protection from corrosive threats.
- 10. For installation buried underground, concrete/asphalt or embedded in concrete, CSST must be routed in a nonmetallic water-tight conduit which has an inside diameter at least 112 in. larger than the outside diameter of the tubing. For under concrete/asphalt slab, sleeved CSST must be buried in accordance with all local codes. No mechanical joints are permitted within the conduit.
- 11. Electrical Bonding must be in place as described on page XX under "Electrical Bonding/Grounding."

WARNING: Improper installation or operation of the system may result in fire, explosion, or asphyxiation. Only components provided or specified by Pro-Flex, LLC, for use with Pro-Flex[®] & Flak Jacket[™] CSST as part of the fuel gas system are to be used in the installation. Use of components from other flexible gas piping systems other than those specified as part of the Pro-Flex[®] system is prohibited and may result in poor system performance and serious bodily injury or property damage.

While every effort has been made to prepare this document in accordance with all regional model codes in effect at its printing, Pro-Flex, LLC cannot guarantee that the local administrative authority will accept the most recent version of these codes. It is the ultimate responsibility of the qualified installer to determine suitability and acceptance of any building component including gas piping. Pro-Flex, LLC, manufacturers of Pro-Flex[®] & Flak Jacket[™] CSST assumes no responsibility for labor or material for installations made without prior determination of local code acceptance.

9.0 Terminology

1 CONVERSION FACTORS

INCHES OF WATER COLUMN (in.-w.c.) - Method by which pressure is measured inches by a manometer or pressure gauge. Used in the gas industry when the pressure is less than 1 psi.

PRE	SSURE	CONVER	SION CHART
1/4 psi =	6.921	in. w.c. =	(approx. 7 w.c.)
1/2 psi =	13.842	in. w.c. =	(approx. 14 w.c.)
1 psi =	27.684	in. w.c. =	(approx. 28 w.c.)
2 psi =	55.368	in. w.c. =	(approx. 56 w.c.)
5 psi =	138.42	in. w.c. =	(approx. 140 w.c.)

2 TERMINOLOGY

AGA - American Gas Association

ANSI - American National Standards Institute

ANSI 2223.1 - 1992 edition of the National Fuel Gas Code published by American National Standards Institute. Also known as NFPA 54 (National Fire Protection Association pamphlet 54)

ASTM - American Society for Testing and Materials

APPLIANCE (Equipment) - Any device which utilizes gas as a fuel or raw material to produce light, heat, power, refrigeration, or air conditioning.

APPROVED - Acceptable to the authority having jurisdiction.

ASME - American Society of Mechanical Engineers

AUTHORITY HAVING JURISDICTION -The organization, office or individual responsible for "approving" equipment, an installation or procedure.

BTU - Abbreviation for British Thermal Unit, which is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit.

CFH - Gas flow rate stated in cubic feet per hour. A CFH of natural gas usually contains 1,000 BTU's and LPG contains 2,500 BTU's. Consult your local gas utility for actual BTU content in your area.

CAN-CGA-B149-1 - Natural gas installation code book used in Canada. Most current edition.

CAN-CGA-B149.2 - Propane gas installation code book used in Canada. Most current edition.

CSST - Corrugated stainless steel tubing

CONCEALED GAS PIPING - Gas piping, which, when in place in a finished building, would require removal of permanent construction to gain access to the piping.

CONNECTOR, GAS APPLIANCE - A factory-fabricated assembly of gas conduit and related fittings designed to convey gaseous fuel, and used for making connections between a gas supply piping outlet and the gas to an appliance. It is equipped at each end for attachment to standard taper pipe threads.

DELIVERY PRESSURE - Gas pressure available after the gas meter.

DESIGN PRESSURE - The maximum permitted operating pressure.

DRIP LEG - The container (dirt trap pocket) placed at the lowest point in a system of piping to collect foreign materials and condensate. The container must be accessible for cleanout.

EHD (EQUIVALENT HYDRAULIC DIAMETER) - A measurement of the relative hydraulic efficiency between different tube sizes. The larger the value of EHD, the greater the flow capacity.

ELEVATED PRESSURE SYSTEM - Terms for any pressure above 1/2 PSIG, but less than 5 PSIG.

EXPOSED GAS PIPING - Gas piping which will be in view in the finished structure.

FUEL GAS - A commonly distributed gas used for fuel such as natural gas, manufactured gas, undiluted liquefied petroleum gas (vapor phase only), liquefied petroleum gas-air mixtures of these gases (included propane and butane).

GAS UTILIZATION EQUIPMENT - Any device which utilizes gas as a fuel or raw material or both.

JOINT - A connection between two lengths of tubing or a length of tubing and fitting.

LISTED - Equipment or materials including a list published by an organization acceptable to the authority having jurisdiction and concerned with product evaluation that maintains periodic inspection of production of listed equipment or materials and whose listing states either that the equipment or material meets appropriate standards or has been tested and found suitable for use in a specified manner. LOCKUP PRESSURE, REGULATOR - The system pressure, immediately downstream of the regulator, at which the regulator valve will completely close (leak tight) under noflow conditions to prevent the downstream pressure from exceeding a predetermined level

LOAD - The amount of gas required by an appliance, or group of appliances per their manufacturers rating (see CFH definition).

MANIFOLD - A fitting to which a number of branch lines are connected.

MAXIMUM ACTUAL OPERATING PRESSURE - The maximum pressure existing in a piping system during a normal annual operating cycle.

METER - An instrument installed to measure the volume of gas delivered through a piping system.

NFPA - National Fire Protection Agency

PIPING SYSTEM - As used in this manual, an assembly of corrugated stainless steel tubing and tubing connection fitting, intended for field assembly and installed in residential or commercial building to distribute fuel gas to gas utilization equipment within the building. The piping system may also include a gas pressure regulator(s), shutoff valves, tube shielding devices, distribution manifold(s) and other approved devices or components.

PRESSURE - Unless stated otherwise, is expressed in pounds per square inch above atmospheric pressure, i.e. gauge pressure (PSIG).

PRESSURE DROP - The loss of static pressure of flowing fuel gas due to friction or other flow resistance in tubing, fittings, valves, regulators or other devices in the piping system.

PRESSURE REGULATOR - A valve which reduces and maintains pressure. It automatically opens and closes in response to changing pressure conditions in the downstream piping.

PSIG - Pounds per square inch, gauge. The pressure as read from a measurement gauge or device. Gauge pressure is pressure above atmospheric pressure and is sometimes referred to as PSI.

PURGE - To completely displace an existing gas with a new gas.

QUALIFIED INSTALLER - Any individual, firm, corporation or company which either in person or through a representative is engaged in and is responsible for the installation or replacement of building gas piping systems, who is experienced in such work, familiar with all precautions required, and has compiled with all the requirements of the authority having jurisdiction.

QUICK-DISCONNECT DEVICE - A hand-operated device which provides a means for connecting and disconnecting an appliance or an appliance connector to a gas supply, and which is equipped with an automatic means to shut off the gas supply when the device is disconnected.

REGULATOR, GAS APPLIANCE PRESSURE - A device placed in a gas line for controlling and maintaining a uniform pressure to the manifold or gas burning equipment

REGULATOR, PRESSURE - A device installed/placed in a gas line for reducing, controlling and maintaining the pressure in that portion of the piping system downstream of the device. This device is used in elevated pressure systems and is referred as a pressure regulator in this manual.

REGULATOR, SERVICE PRESSURE - A device installed by the servicing gas supplier to reduce and limit the service line gas pressure to delivery pressure.

REGULATOR VENT - The opening in the atmospheric side of the regulator housing permitting the in and out movement of air to compensate for the movement of the regulator diaphragm.

SHIELDING DEVICES - A component of the piping system (Floppy-Flex(tm)) used to protect the installed corrugated tubing form accidental puncture by nails, screws or similar hardware at concealed tubing support points.

SPECIFIED GRAVITY - As applied to gas, is the ratio of the weight of a given volume to that of the same volume of air, both measured under the same conditions.

STRIKER PLATES - A special type of shielding device used when concealed tubing is run through wall studs, floor and ceiling joists or other structural members where tubing movement is restricted.

TUBING - ASTM A240 Type 304 Annular Corrugated Stainless Steel Tubing which is bendable and comes in 75 foot coils.

VALVE, SHUTOFF - A device used in piping to control the gas supply to any section of the piping system or to an appliance.

VENT LIMITING DEVICE - A valve that limits the discharge of gas from a regulator in the event of a diaphragm rupture. Gas discharge is limited to an ANSI approved level. See manufacturer's specifications.

WATER COLUMN, INCHES - method of stating pressure measured in inches of water column by a manometer or pressure gauge. Refer to "CONVERSION FACTORS" listed at the beginning of this text.

9.2 Limited Warranty

PRO-FLEX[®] INTERIOR GAS PIPING SYSTEM

Subject to the terms and conditions contained in this Limited Warranty, Pro-Flex, LLC, "Pro-Flex[®] warrants to the original purchaser of the **PRO-FLEX**[®] Interior Gas Piping System that such product will be free from any defect in material and workmanship for a period of one (1) year from the date of installation. Should any such defects be discovered within one (1) year from the date of installation by a qualified installer the questionable **PRO-FLEX**[®] part should be returned to Pro-Flex, LLC at 501 S. State Road 341, Hillsboro, IN 47949, (877) 798-6291. If, upon inspection Pro-Flex, LLC determines the part to be defective in material or workmanship, then Pro-Flex, LLC will furnish a replacement, or at its option, repair the defective part. This warranty does not include the cost of labor for removing and replacing or repairing the defective part nor does it cover the cost of transporting the materials.

This warranty shall not apply to any component part of the Interior Gas Piping system product if it has been installed, altered, modified, repaired or misused, through negligence or otherwise, in a way that in the opinion of Pro-Flex, LLC affects the reliability of, or detracts from the performance of the product. This limited warranty does not cover defects or damage resulting from abuse, neglect, lack of reasonable care, modification or attachment of improper components or devices to this product. Nor does this limited warranty cover replacements to repairs necessitated by loss or damage resulting from any cause beyond the control of Pro-Flex, LLC including, but not limited to, acts of God, acts of government, floods and fires.

INSTALLATION REQUIREMENTS

This limited warranty coverage is subject to and expressly contingent upon the following conditions and limitations; each of the following is a condition precedent to Pro-Flex® obligations hereunder.

- A. Installation must be performed strictly in accordance with local plumbing and/or building codes, ordinances and regulations and all other applicable taws, and in accordance with the PRO-FLEX[®] Installation/Training Guide and good industry practices. Any deviation from recommended installation or use instructions will nullify this limited warranty.
- B. Installation must be performed by a qualified installer who is recognized as being qualified to install gas piping by local, state, federal or other governmental agencies.
- C. Pressure testing must be performed during rough construction with piping system exposed, all done in accordance with good and safe business practices.
- D. Pro-Flex® assumes no responsibility for any system which has been improperly installed.
- E. The purchaser shall be responsible for giving timely written notice of a warranty failure and promptly making TRU-FLEX" aware of any alleged system deficiencies which purchaser desires to be remedied, all of which shall be done within seven (7) days of discovery of the alleged system deficiency.

GENERAL CONDITIONS AND LIMITATIONS

The obligation of Pro-Flex[®] pursuant to the warranty is limited, at Pro-Flex's discretion, to: (a) making a replacement component part available, (b) the repair of the defective component part, or (c) the refund of the purchase price. Pro-Flex[®] shall have no obligation for the furnishing of any labor involved or connected therewith such as the labor required to diagnose trouble or to remove or install any such product, nor does it include responsibility for any transportation expenses or any damages or losses incurred in the transportation in connection therewith.

Pro-Flex[®] shall in no event be liable for other losses, damages, costs or expenses claimed by anyone, whether direct or indirect, and whether arising in contract or tort, including loss from failure of the product to operator for any period of time, and all other direct, indirect, special, incidental or consequential damages, including all personal injury and property damage.

The foregoing limited warranty is in lieu of all other warranties by Pro-Flex, LLC, express, statutory or implied by law. Without limiting the generality of the foregoing, Pro-Flex[®] makes no warranty of merchantability or fitness of the product for any particular purpose. Pro-Flex[®] neither assumes nor authorizes any person to assume Pro-Flex[®] any other obligation or liability in connection with the sale of the hereinabove referenced product.

Notes

Notes

Please visit our website: www.ProFlexCSST.com or to register to become a qualified installer or fill out and mail the card below.

Please fill in all blanks to verify you have read and understand all aspects of the installation/training guide and for warranty activation.

.....

l, date: have Flexi authc authc	no-		PF# AR
read ible C prity.	Pro-Flex® & QUALIFIED	I,, Qualified Insta	aller, have read the Pro-Flex ^{®,} LLC
Sas P This		InstallationTraining Guide and understand	all aspects of installation for Pro-
Piping S qualifier the whole	Ζī	Flex [®] & Flak Jacket [™] CSST, local plumb	-
installation/training Piping Systems. is qualification ex	Flak Jacket	accordance set forth.	
n/tra vyste	ت AL		
ion/trainir Systems. fication e	E è	Signed this day	
ing guid s. I am expires	· · · · · · · · · · · · · · · · · · ·		
guide am a pires :	^{rm} CSS		
and u qualit 2 yea	RD SS	signature of Qualified Installer	please PRINT your name above
d und alifie ears	- 5	Contractors Company Name:	
understand ified installe ars after dars	PE	Address:	
stan Istal	PF# AR	Phone Number:	
nd the aller pe date	<u>ج</u>		()
		Email:	
PRO-FLEX®		NOTE: Return above postcard to: PRO-F	LEX LLC

TO: PRO-FLEX, LLC 501 S. STATE ROAD 341 HILLSBORO, IN 47949